DETERMINATION OF BIODISTRIBUTION OF GOLD NANOPARTICLES USING SPECTRAL PHOTON-COUNTING COMPUTED TOMOGRAPHY K-EDGE IMAGING IN VIVO

RSNA 2016

Presenter

Salim Si-Mohamed

Organisation

David Cormode, Salim Si-Mohamed, Daniel Bar-Ness, Monica Sigovan, Caroline Bouillot, Pratap C. Naha, Franck Lavenne, Philippe Coulon, Matthias Bartels, Bernhard Brendel, Heiner Daerr, Axel Thran, Ewald Roessl, Ira Blevis, Michal Rokni, Loic Boussel, Philippe Douek

DISCLOSURES

Research Grant, Koninklijke Philips NV David Cormode

Nothing to disclose: Salim Si-Mohamed

Nothing to disclose: Daniel Bar-Ness

Nothing to disclose: Monica Sigovan

Nothing to disclose: Caroline Bouillot

Nothing to disclose: Pratap Naha

Nothing to disclose: Franck Lavenne

Employee, Koninklijke Philips NV Philippe Coulon

Employee, Koninklijke Philips NV Matthias Bartels

Researcher, Koninklijke Philips NV Bernhard Brendel

Employee, Koninklijke Philips NV Heiner Daerr

Employee, Koninklijke Philips NV Axel Thran

Employee, Koninklijke Philips NV Ewald Roessl

Employee, Koninklijke Philips NV Michal Rokni

Employee, Koninklijke Philips

Nothing to disclose: Loic Boussel

Nothing to disclose: Philippe Douek

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 643694

Ira Blevis

BACKGROUND

(1) Taguchi K, Iwanczyk JS. Med Phys. 2013

OBJECTIVE

To investigate the feasibility of a spectral photon-couting computed tomography system (SPCCT) for specific characterization and quantification of a gold nanoparticle contrast agent's organ biodistribution *in vivo* over time

- Spectral photon-counting CT system
 - Photon-counting detectors
 - Modified clinical base
 - Conventional X ray tube
 - Field of vue of 160 mm
 - Gantry rotation time of 1 second
 - Parameters used:
 - Tube current of 100 mAs
 - Tube voltage of 120 kVp

Philips Spectral Photon Counting CT pre-clinical prototype UCBL, CERMEP, Lyon, France

- Gold nanoparticles
 - Characteristics
 - capped with thiol-PEG-2000 (fig A)
 - core size of 12.5 nm determined by transmission electron microscopy (fig B)
 - mean hydrodynamic radius of 18 nm
 - concentration: 65 mg/ml
- Blood pool effect
- Good candidate for K-edge imaging (1)
- Known to be taking up by the mononuclear phagocyte system (MPS) (2)

(1) Naha PC et al. Publ Assoc. 2015(2) Cai Q-Y et al. Invest Radiol. 2007RSNA 2016

- 3 adults NZW rabbits $(3.3 \pm 0.4 \text{ kg})$
- Injection of 12 ml of AuNP
- Imaging protocol
 - D1: pre-injection (T0), 30-45 seconds (T1), 7-8 minutes (T2) after injection
 - Repetitive acquisitions over 6 months follow-up at one week (W1), one month (M1) and six months (M6)

- Image reconstruction
 - Conventional images: HU units
 - Specific Gold images: mg/ml units
- Analysis
 - Regions of interest
 - Heart, kidney, brain
 - Organs of the mononuclear phagocyte system (MPS)
 - spleen, liver, bone marrow, lymph node

 Ex vivo analysis of the biodistribution of the gold nanoparticles by transmission electron microscopy (TEM)

Correlation with inductively coupled plasma-optical emission spectrometry (ICP-OES)

In vitro imaging

10.4

Day of injection: Perfusion imaging => Blood pool effect

11

Follow up: Uptake imaging

=> Mononuclear phagocyte system

Signal in the bone marrow at 1 month

- Uptake in the organs of the MPS
 - Bone marrow
 - Liver
 - Spleen
 - Lymph node
- Aggregation in the macrophages⁽¹⁾

(1) Naha PC et al. Toxicol. In Vitro. 2015

LIVER AT M6

K: Kupffer cell S: Sinusoid L: Lysosome H: Hepatocyte

- Spleen
- Lymph node
- Bone marrow
- Liver
- Kidney, heart, brain, blood

CONCLUSION

- SPCCT is capable of assessing <u>biodistribution of gold nanoparticles</u> and <u>quantitative in-vivo imaging</u> of pharmacokinetics in organs over time.
- Gold nanoparticles appear to be <u>suitable contrast agents</u> for <u>the vascular system</u> initially and for <u>the MPS</u> over time, opening to at least two major applications in the field of cardiovascular disease, and hemato-oncology.
- BUT poor biological elimination leading to potential questions over long-term safety.

ACKNOWLEDGEMENTS

France Life Imaging

University Lyon1 Claude Bernard, Creatis Laboratory, CNRS UMR 5220, INSERM U1206
Hospices Civils de Lyon, CERMEP, Centre d'imagerie du vivant
Philips, CT Clinical Science, Suresnes, France
Philips Research Laboratories, Hamburg, Germany
Philips, Global Advanced Technologies, CT, Haifa, Israel
BRACCO Imaging S.P.A

King's College, London

VOXCAN

Universita degli Studi di Torino Erasmus University, Rotterdam Cliniques Universitaires Saint-Luc, Bruxelles Lyon Ingenierie Projet University of Pennsylvania

Funding from the European Union's Horizon 2020 No 643694.