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Abstract

Objectives

To evaluate the accuracy of Spectral Photon-Counting Computed Tomography (SPCCT) in

the quantification of iodine concentrations and its potential for the differentiation between

blood and iodine.

Methods

Tubes with blood and a concentration series of iodine were scanned with a preclinical

SPCCT system (both in vitro and in an ex vivo bovine brain tissue sample). Iodine density

maps (IDM) and virtual non-contrast (VNC) images were generated using the multi-bin

spectral information to perform material decomposition. Region-of-interest (ROI) analysis

was performed within the tubes to quantitatively determine the absolute content of iodine

(mg/ml).

Results

In conventional CT images, ROI analysis showed similar Hounsfield Unit (HU) values for the

tubes with blood and iodine (59.9 ± 1.8 versus 59.2 ± 1.5). Iodine density maps enabled

clear differentiation between blood and iodine in vitro, as well as in the bovine brain model.

Quantitative measurements of the different iodine concentrations matched well with those

of actual known concentrations even for very small iodine concentrations with values below

1mg/ml (RMSE = 0.19).
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Conclusions

SPCCT providing iodine maps and virtual non-contrast images allows material decomposi-

tion, differentiation between blood and iodine in vitro and ex vivo in a bovine brain model and

reliably quantifies the iodine concentration.

Introduction

Unenhanced head computed tomography (CT) is commonly performed within the first day

after mechanical thrombectomy in ischemic stroke patients to assess for early complications

such as haemorrhage[1]. However, the differentiation between blood and extravasation of

iodine-based contrast material due to a disruptured blood brain barrier is often difficult

because of the similar Hounsfield Unit (HU) values. Therefore, follow-up examinations might

be necessary that then delay final diagnosis and therapy management. Thus, early differentia-

tion is important to provide best possible treatment, especially for therapy adjustment regard-

ing anticoagulation therapy or treatment with antiplatelet agents.

In the last years, spectral CT imaging methods [2] have increasingly been used in research

and clinical practice to simultaneously evaluate anatomy and tissue composition. This is possi-

ble because x-ray attenuation is energy- and material-dependent. Using a dedicated material

decomposition scheme prior to image reconstruction, virtual non-contrast images (VNC) and

iodine density maps (IDM) can be reconstructed to differentiate between blood and iodinated

contrast material. Some studies have already shown that differentiation between haemorrhage

and extravasation of iodine-based contrast material due to a disrupted blood brain barrier in

ischemic stroke patients after mechanical thrombectomy is possible with dual-energy CT

(DECT) [3–5]. Recently, we could show a high accuracy in iodine quantification using dual-

layer CT (DLCT) that represents a technology in between traditional DECT and detector-

based Spectral CT [6]. The concept of dual-energy CT is based on an examination using two

different acceleration voltages, either from two different x-ray sources[7] or from one x-ray

source switching between two different kV settings[8–10].

Alternatively, a detector-based approach, Spectral Photon-Counting CT (SPCCT), can be

used where x-ray photons are individually counted and spectrally binned by analyzing the

pulse heights generated in a semi-conductor detection layer [11–13, 9]. This concept allows to

incorporate a multiple (more than two) energy bins for energy-selective data acquisition. A

recently published review [14] summarized that photon-counting CT is a promising technique

that might extend and improve the clinical use of CT in the future. Photon-counting CTs can

lower image noise, increase spatial resolution, and reduce radiation doses by at least 30%–40%

[14]. Another study conformed the potential for high resolution and further concluded that

high accuracy for iodine quantification and improved contrast to noise ratio is feasible with

SPCCT [15]. Furthermore, and by using k-edge imaging [16], it is possible to differentiate

between gadolinium-based and non-ionic iodine-based contrast material. This has been dem-

onstrated in a colon phantom [17], a heart model in animals in vivo [18], between targeted

gold nanoparticles, iodine-based contrast agent and calcium phosphat [19], or even between

three different contrast agents (bismuth, gadolinium-based and iodine-based contrast mate-

rial) in an abdomen in animals in vivo [20].

Furthermore, pilot studies have already demonstrated the possibility of using SPCCT for

diagnostics of the abdomen [21] and vascular imaging of head and neck [22] in humans with

promising results. Thus, it seems likely that clinical CT imaging will benefit from SPCCT in

the future after further development of scanners with enlarging the FOV size to clinical rele-

vant sizes.
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In this study, we investigated the potential of SPCCT for the differentiation between blood

and iodine in vitro and in an ex vivo bovine brain model and for the quantification of different

iodine concentrations.

Material and methods

Scan specimens

First, a quantitative phantom experiment was performed using a blood sample taken from a

volunteer, and inserts with different concentrations of iodine (0.5 mg/ml; 0.75 mg/ml; 1 mg/

ml; 2 mg/ml; 5 mg/ml and 10 mg/ml CTIodine1; QRM GmbH, Forchheim, Germany)

embedded into a solid cylinder of water-equivalent material and 10 cm diameter (Fig 1). Scans

were repeated four times and each scan included three different scan positions. The volunteer

gave written informed consent and the study was approved by the local ethics committee

Fig 1. Phantom model with inserts with different concentrations of iodine (QRM GmbH, Forchheim, Germany).

https://doi.org/10.1371/journal.pone.0212679.g001
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(Ethikkommission der Fakultät für Medizin der Technischen Universität München) Number:

97/18s.

Second, a simulation model experiment was performed with tubes of (a) blood prepared as

explained above and (b) iodine-based contrast material (2 mg/ml; Bracco, Milan, Italy), which

were positioned within fresh bovine brain tissue (commercially available from a butcher).

Here, a low iodine concentration (2 mg/ml) was chosen to obtain similar HU values compared

to pure blood in the conventional CT images.

Spectral photon-counting CT

All experiments were performed with a five bins SPCCT system (Philips Healthcare, Haifa,

Israel) to obtain spectral and conventional data. SPCCT is based on a semiconductor detector

technology operated in single photon-counting mode with energy discrimination using 5 bins

set as 30, 51, 64, 72, and 85 keV. The in-plane field of view was 168 mm, with a z-coverage in

the scanner isocenter of 2.5 mm. Axial scans over 360˚ were obtained with a tube current of

100 mA, a tube voltage of 120 kVp, a scanner rotation time of 1 second, and 2400 projections

per rotation[23].

Material decomposition and quantitative measurements

Multi-bin photon-counting data were pre-processed, and a conventional CT image was

derived from the summed information contained in all energy bins. In addition, after pileup

correction, the multi-bin counting data were used to perform a maximum likelihood-based

material decomposition into a water and iodine material basis[11, 12] in projection space.

Iodine was decomposed and quantified from the blood/iron background. Pile-up is corrected

by a look-up table, which relates actual photon flux to the one counted in the different energy

bins, containing pile-up. The material-decomposed projections have been reconstructed using

FBP and no post processing was done to further reduce image noise on FBP images. All images

were reconstructed on a voxel grid of 0.39 × 0.39 × 0.25 mm3. The iodine and virtual non-con-

trast images were averaged to a slice thickness of 1 mm after CT reconstruction.

Region of interest analysis

First, reference scans were performed to calibrate the following measurements. Then, measure-

ments of all tubes and inserts, as described above, were performed. Here, region-of-interest

(ROI) analysis was performed within the tubes to quantitatively determine the absolute content

of iodine concentration using ImageJ (National Institutes of Health (NIH), United States[24]).

A circular ROI of 120 mm2 was drawn in the center of the probes to perform measurements.

Statistical analysis

The iodine concentration measured with SPCCT was correlated to the true iodine concentra-

tion by Pearson correlation and student´s t-test. Root mean square error (RMSE) was calcu-

lated. Additionally, Bland-Altman analysis was performed to determine the agreement

between measured and true iodine concentrations.

Results

In vitro experiments

Iodine density maps enabled clear differentiation between blood and iodine in vitro (Fig 2). In

the obtained IDM, already the smallest used iodine concentration (0.5 mg/ml) could be visu-

ally discriminated from the blood sample. Furthermore, spectral photon-counting CT enabled
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Fig 2. Phantom sample with blood and inserts with varying iodine concentrations as indicated in the image. (A) Conventional CT, where blood cannot be

differentiated from the lower iodine concentrations. (B) Iodine map, where lower iodine concentrations are discernible from the blood sample. Visually, already the

smallest measured iodine concentration of 0.5 mg/ml can be discriminated from blood.

https://doi.org/10.1371/journal.pone.0212679.g002

Fig 3. Scatter plot showing correlation between iodine concentration measured with SPCCT and true iodine concentration contained in the phantom

(R2 = 0.9993, p< 0.03).

https://doi.org/10.1371/journal.pone.0212679.g003
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quantitative measurements of different iodine concentrations. The quantitative measurements

of the inserts with different iodine concentrations matched well with those of actual known

mixtures (measured: 0.70 ± 0.14 mg/ml, actual: 0.5 mg/ml; measured: 0.93 ± 0.19 mg/ml,

actual: 0.75 mg/ml; measured: 1.11 ± 0.19 mg/ml, actual: 1 mg/ml; measured: 1.98 ± 0.18 mg/

ml, actual: 2 mg/ml; measured: 5.11 ± 0.15 mg/ml, actual: 5 mg/ml; measured: 10.35 ± 0.24

mg/ml, actual: 10 mg/ml; RMSE = 0.19; Pearson´s correlation = 0.998). Fig 3 shows a scatter

plot displaying excellent correlation between measured iodine concentration and true iodine

concentration (R2 = 0.9993, p< 0.03). A Bland-Altman plot showing differences between true

and measured iodine concentrations versus the average of true and measured iodine concen-

trations is shown in Fig 4. Nearly all measurements (94%, 68/72) were located within the

range of the confidence limits.

Biological phantom model

In the conventional CT images, the ROI analysis showed similar HU density values for the tubes

with blood and iodine (blood: 59.9 ± 1.8 versus iodine: 59.2 ± 1.5), thus differentiation between

Fig 4. Bland-Altman plot showing difference between true and measured iodine concentrations versus average of true and measured iodine

concentrations. The black line represents the bias and the dashed lines represent upper and lower limits of the mean (confidence limits ± 1.96).

https://doi.org/10.1371/journal.pone.0212679.g004
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both materials was not possible in conventional CT images. Iodine maps enabled clear differentia-

tion between blood and iodine in the bovine brain (Fig 5). Quantitative measurements showed an

iodine concentration of 2.1 ± 0.8 mg/ml (prepared concentration was 2 mg/ml).

Discussion

In this study, we demonstrated that SPCCT enables discrimination between blood and iodine-

based contrast material in vitro and in an ex vivo bovine brain model. Furthermore, SPCCT

allows reliable quantification of different iodine concentrations in vitro.

Hyperdense areas in the brain parenchyma are a frequent finding (25–84%) [25, 26] in con-

trol CTs of the head after interventional thrombectomy and are significantly more often asso-

ciated with haemorrhagic transformation of the infarction[25]. One study concluded that

hyperdense lesions seem not to be a predictor of poor outcome[25]. However, the risk of dete-

rioration seems to be significantly increased in patients with cerebellar infarction and hemor-

rhagic conversion[27]. Therefore, differentiation between blood and extravasation of

iodinated contrast material is highly relevant.

Compared to other studies that quantified iodine in dual-energy CTs[28, 29], we extended

the range of iodine quantification towards very low levels in the range of 0.5–2.0 mg/ml. In

our study, we could show that there is a strong correlation between the measured and the true

iodine concentrations using SPCCT. Quantification of iodine concentrations can be relevant

to detect lesions and characterize tissue composition[30], for example when distinguishing

pulmonary artery sarcoma from pulmonary thromboembolism[31] or clear cell from papillary

renal cell carcinoma[32].

A limitation of our study is the absence of any real in vivo patient data; however, this is not

possible at this time as the FOV of the used pre-clinical SPCCT scanner is too small for adult

human patients–however a FOV typical of clinical scanners could be achieved via development

of the detector array. Furthermore, surrounding bone-like tissue with corresponding beam

hardening is missing that could influence the accuracy of iodine quantification. In the future,

it will be necessary to translate our results to a clinically relevant field-of-view in an in vivo

Fig 5. Tubes with blood or iodine-based contrast material positioned in bovine brain tissue (ex vivo). In conventional CT (left) the content of the tubes

cannot be differentiated due to similar HU values. In the iodine (middle) and overlay (right) image the tubes are clearly distinguishable due to the

decomposition algorithm.

https://doi.org/10.1371/journal.pone.0212679.g005
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(animal) model. In addition, another study has to be performed with multiple concentrations

of iodine in this or a similar biological model to evaluate the quantitative accuracy.

Conclusions

In conclusion, Spectral Photon-Counting CT provides iodine density maps and allows for

material decomposition and differentiation between blood and iodine in vitro and within an

ex vivo bovine brain model. Furthermore, reliable quantification of different iodine concentra-

tions is feasible in vitro. The introduction of such a system into the clinical field may improve

diagnostic imaging.
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