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Abstract

Objective. X-ray spectral computed tomography (CT) allows for material decomposition (MD). This
study compared a one-step material decomposition MD algorithm with a two-step reconstruction
MD algorithm using acquisitions of a prototype CT scanner with a photon-counting detector (PCD).
Approach. MD and CT reconstruction may be done in two successive steps, i.e. decompose the data in
material sinograms which are then reconstructed in material CT images, or jointly in a one-step
algorithm. The one-step algorithm reconstructed material CT images by maximizing their Poisson
log-likelihood in the projection domain with a spatial regularization in the image domain. The two-
step algorithm maximized first the Poisson log-likelihood without regularization to decompose the
data in material sinograms. These sinograms were then reconstructed into material CT images by least
squares minimization, with the same spatial regularization as the one step algorithm. A phantom
simulating the CT angiography clinical task was scanned and the data used to measure noise and
spatial resolution properties. Low dose carotid CT angiographies of 4 patients were also reconstructed
with both algorithms and analyzed by a radiologist. The image quality and diagnostic clinical task were
evaluated with a clinical score. Main results. The phantom data processing demonstrated that the one-
step algorithm had a better spatial resolution at the same noise level or a decreased noise value at
matching spatial resolution. Regularization parameters leading to a fair comparison were selected for
the patient data reconstruction. On the patient images, the one-step images received higher scores
compared to the two-step algorithm for image quality and diagnostic. Significance. Both phantom and
patient data demonstrated how a one-step algorithm improves spectral CT image quality over the
implemented two-step algorithm but requires alonger computation time. At alow radiation dose, the
one-step algorithm presented good to excellent clinical scores for all the spectral CT images.

1. Introduction

Photon-counting detector computed tomography (PCD-CT) represents a milestone in medical imaging
(Danielsson et al 2021, Rajendran et al 2021, Si-Mohamed ef al 2021). Compared to energy-integrating detectors
(EIDs), PCDs improve the spatial resolution for the same dose level and enable low-dose clinical protocols.
These improvements have been demonstrated with conventional images, i.e. the CT image reconstructed from
the attenuation of all detected photons. The conventional image is traditionally reconstructed with filtered back-
projection (FBP) for EID-CT and PCD-CT. The improved resolution and noise properties come from the
detection technology.

PCDs and dual-energy (DE) EIDs also provide spectral images (McCollough et al 2020) but spectral images
inherently suffer from a higher noise level than conventional imaging. While the reconstruction algorithm is
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rather similar between CT systems in conventional imaging, different strategies have been adopted to
reconstruct the spectral images and fundamentally different algorithms have been developed.

Spectral x-ray images measure the energy variability of the attenuation coefficient of the patient. In most
cases, spectral CT uses the model of (Alvarez and Macovski 1976) which describes the variations of the linear
attenuation coefficients with energy by the linear combination of a few basis functions. With this model, the
reconstruction of the energy-resolved CT image of a patient comes down to the reconstruction of two basis
material CT images (with an additional basis material CT image for each K-edge contrast agent). This material
decomposition (MD) formulation combined with a multi-energy measurement (performed either with a
DE-CT or a PCD-CT scanner) enables material identification and quantification.

In PCD-CT acquisitions, several thresholds are set to define a corresponding set of energy bins, each photon
detected by the detector being sorted in the bin corresponding to its measured energy. Because of physical
phenomena in the detector (charge sharing, fluorescence escape, etc.), the PCD spectral response is imperfect
(Flohr et al 2020, Si-Mohamed et al 2021) which has to be taken into account in the reconstruction. The spectral
distortion is often accounted for during MD. MD and tomographic reconstruction are the two sub-problems of
spectral CT reconstruction.

Different strategies have been developed to tackle spectral CT reconstruction. They can be classified into
three categories depending on when MD occurs: pre-, post- or during tomographic reconstruction. Pre-
reconstruction techniques perform a projection-based MD: basis sinograms are first decomposed from the
energy bins (Roessl and Proksa 2007) and then reconstructed into basis CT images. These methods are
computationally efficient but it is difficult to implement noise reduction techniques in projection space and
crucial statistical information is lost after MD. Post-reconstruction techniques first reconstruct the CT image of
each energy bin (Maa et al 2009). However, these reconstructed CT images suffer from beam-hardening artifacts
which will degrade the accuracy of the post-reconstruction MD. Finally, one-step (or joint) reconstruction
performs the MD and the tomographic reconstruction jointly. They directly reconstruct the basis material
volumes from the multi-energy projection measurements, unlike pre- and post-reconstruction techniques
which have multiple steps with intermediate results.

All one-step algorithms are iterative unlike pre- and post-reconstruction methods which can use FBP for
tomographic reconstruction. One advantage is that spatial regularization of the material CT images may be used
while performing the MD. However, these techniques are computationally more demanding and require an
efficient optimization algorithm. Several algorithms have been investigated for one-step reconstruction: non-
linear conjugate gradient (Cai et al 2013, Simard and Bouchard 2022), separable quadratic surrogates (SQS)
(Long and Fessler 2014, Weidinger et al 2016, Mechlem etal 2017, Tilley et al 2019, Lee et al 2022, Liu et al 2022)
or algorithms based on proximal operators such as ADMM (Jolivet et al 2020, Schmidt et al 2022), Chambolle-
Pock (Barber et al 2016, Chen et al 2021) or VMILa (Tairi et al 2020). A previous comparative study (Mory et al
2018) has demonstrated that SQS combined with Nesterov’s momentum is an efficient algorithm.

This study aimed at demonstrating the image quality improvement of one-step approaches over a pre-
reconstruction MD method, called two-step in the following. Existing one-step algorithms have been compared
to two-step methods (Mechlem et al 2017, Simard and Bouchard 2022) but, to our knowledge, no study has
rigorously compared the image quality of one-step and two-step material decomposition strategies. In this
study, a one-step algorithm and a two-step algorithm were selected from the literature and implemented.
Aiming at a comparison as fair as possible, the two-step method uses iterative tomographic reconstruction with
the same spatial regularization as the one-step method. In a similar study limited to simulated data, one-step
reconstruction has already demonstrated its potential to reduce metal artifacts compared to a two-step method
(Schmidt et al 2022). Here, experimental data acquired with a full field-of-view (FOV) (500 mm) clinical
prototype PCD-CT are used (Si-Mohamed et al 2023). We propose a methodology to select the hyperparameters
of model-based algorithms from empirical measurements leading to a fair comparison of both methods before
applying it to patient data. Only a few one-step methods have been applied to patient data and this study
demonstrates that they can facilitate the diagnosis on spectral images.

The first part of this work investigates different regularization strengths for the two methods to select
parameters yielding the same level of noise or the same spatial resolution. Image quality metrics are then
evaluated and compared. In a second part of this work, patient data were reconstructed and analyzed by
radiologists for a specific clinical task: carotid angiography.

2. Material and methods

2.1. Spectral forward model
The same forward spectral model was inverted in the two-step or one-step methods for MD. This model
estimates the photon count Cj;, in the energy bin b at the detector pixel i from the scanned object attenuation:
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where T?, and T?,_ are respectively the lower and upper thresholds defining the energy bin b, kVp is the tube
voltage value, S**P the spectral response, and att; the attenuation. The spectral response includes the PCD
response and the incident source spectrum.

In the following, a discretized notation of this model is used where the spectral response is a discretized
spectrum per bin:

_ kvp R
Cib ~ 2 Sb:Spefatt"”. (2)

e=1

This forward model is based on the assumption that the PCD behavior is linear. Non-linearities such as pile-up
effects or scatter are neglected. It also relies on an accurate knowledge of the spectral response, in order to avoid
low and high frequency artifacts (Feng et al 2021).

Using the model of (Alvarez and Macovski 1976), the attenuation is decomposed into several basis material
lengths in the two-step method:

N,

m

attly = > Limfhye 3)

m=1

where N, is the number of basis materials, /is the concatenated vector representing the basis material sinograms
(with m the material index) and p,,, the attenuation coefficient of the basis material.
For the one-step method, the attenuation is decomposed into several basis material densities:

N,

m

attl® = > [Af, li e 4)

m=1

where f is the concatenated vector representing the basis material volumes and A is the projection matrix to
compute a material sinogram from a material volume f,,,.

2.2. Two-step method

The two-step MD was implemented in a projection-based scheme (Roessl and Proksa 2007) which computes in
afirst step the material sinograms from the PCD data by maximizing pixel by pixel the Poisson log-likelihood of
measuring c;, counts after traversing /;lengths of materials:

N,
PIIS(l) = > [ei log (Cy (1) — Cyp> ()] (5)
b=1
where
_ kvp Ny
CoX(l) = Spee exp( > limume) (6)
e=1 m=1

combines equation (2) and (3). Given the pixel by pixel formulation, this log-likelihood is a function of N,,,
scalars and is a small optimization problem (NN, being equal to 2 in this work). The argument of the maximum
was computed with the Nelder-Mead downbhill simplex algorithm (Nelder and Mead 1965).

In a second step, the basis material sinograms were used independently as input of a conjugate gradient (CG)
algorithm (Nocedal 2006) minimizing the penalized least-square difference between the decomposed sinograms
and the projections of the reconstructed material map:

I\G,
PLS(f,) = Y lAf,, — Lull> + A\JCR(f,) ?)
i=1

where N, is the number of detector pixels, R(f,,) is a spatial regularization term and A}, is the regularization
weight defined for each basis material. The spatial regularization is defined by:

N,
R(f) =305 6(f — frd) ®)
j=1€€N;
where jis the voxel index, N, is the number of voxels in the material volume and N; is the set of neighbouring
voxels of the j-th voxel. In this study, ¢ is the Green prior function (Green 1990) which approximates the
absolute value function and is twice differentiable:
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2.3. One-step method
The one-step method reconstructs directly the material volumes from the measured counts. The implemented
method also used the Poisson log-likelihood as in equation (5) but as a function of the material volumes f:

N, N, Ny

PIOS(f) = > [ewlog(CR* () — TR (N1 — D AR(f,,) (10)
i=1b=1 m=1
where
_ kvp N
C9(f) = 5 st exp(— 5 [Afm]iume) (a
e=1 m=1

combines equation (2) and (4) and R( f,,,) is the same regularization term as in equation (8) with /\2S the
associated weights. Since the material volumes are jointly reconstructed, the regularization of one material map
will impact the others. In contrast, the two-step algorithm reconstructs each material map independently and
the regularization of one volume will not impact the others. This is a crucial difference between the two
techniques which was accounted for in the following when adjusting the regularization parameters \[° and A9°.
The Poisson log-likelihood was maximized using the SQS-based algorithm developed by (Weidinger et al
2016) with two modifications to accelerate the convergence, the use of ordered subsets (Hudson and
Larkin 1994) and of Nesterov’s momentum technique (Nesterov 2005). The projections were randomly sorted
into 8 subsets and Nesterov’s momentum was reset every 50 iterations (i.e. every 400 updates). Finally, the one-
step method may be unstable at the superior and inferior ends of the CT image. We used the correction
described by (Rodesch et al 2020) based on spatial regularization weights. This method increases the spatial
regularization at the superior and inferior extremities where each voxel is seen by fewer projection pixels.

2.4.PCD-CT scanner

The two-step and one-step methods were implemented within the Reconstruction Toolkit (RTK) (Rit et al 2014)
and tested on real data measured with a PCT-CT scanner (SPCCT, Philips Healthcare, Haifa, Israel). This pre-
clinical prototype has a 500 mm FOV, a 1.825 magnification factor and a Z-coverage of 17.6 mm (Si-Mohamed
etal2023). Projections were acquired with a 5 energy bins PCD-CT scanner. It was operated ina 2 x 2 binning
mode, resultingin a 0.55 x 0.55 mm pixel size at the isocenter and 32 x 924 (binned) pixels per projection, in
axial mode for the phantom acquisitions and in helical mode for the patient protocol. In both modes, 2400
projections per rotation were acquired but the source parameters were set to different values, as described in the
following.

Prior to all acquisitions, images of a step wedge were acquired to calibrate the spectral response S**
(equation (2)) for the selected source parameters (voltage and current). This procedure has been developed by
the system manufacturer. Additionally, a post-processing routine is also provided by the manufacturer to
correct for concentric ring artifacts in the material density maps which was applied to all reconstructed images.
The assumption is made that this correction equally affects the two-step and one-step images which was
validated empirically.

2.5.Phantom geometry

A 100 mm diameter cylindrical module (figure 1) was placed in an anthropomorphic thorax phantom (QRM,
Moehrendorf, Germany). This module was designed to reproduce the contrast of a coronary CT angiography
(CTA) protocol. The thorax phantom simulates the attenuation of the chest of a small human adult and its
heightis 10 cm. The same phantom was used previously to compare the quality of PCD-CT conventional images
with state-of-the-art DE-CT (Rotzinger et al 2021). It is made of polyethylene (PE) with a 50 mm diameter hole,
filled with iodine at 2 mg/ml concentration. The phantom was scanned with an axial protocol (rotation time:

1 s),a120 kVp tube voltage and 80 mA current. The thresholds were set to 30/51/62/72/81 keV.MD CT
images were reconstructed with both MD methods and a 0.25 x 0.25 x 0.5 mm voxel size. The reconstructed
FOV was 500 x 500 x 10 mm.

2.6. Evaluation metrics

The PE and iodine have close densities in the water map (respectively 970 and 1020 mg ml ', see table 1). The
contrast between the PE and the iodine, dominant in the iodine CT image, is about 4 mg/ml. This corresponds
to the CTA clinical task (see figure 2 and supplemental figure I). The water/iodine MD was computed for each
method with various values of the regularization parameters. For each regularization parameter, the iodine
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Figure 1. Photograph of the CTA module placed inside the QRM anthropomorphic thorax phantom.

1400

lodine (mg/ml)
Conventional image (HU) 7 :
1300

1200
1100

1000

Figure 2. Left: conventional image of the anthropomorphic phantom. Right: water/iodine MD CT images of the CTA module. The
dashed circle indicates the PE/iodine transition used for the assessment of the spatial resolution.

Table 1. Mean values of the PE and iodine solution measured in the
conventional and the water/iodine MD CT images. HU numbers were
measured in the conventional image reconstructed by the scanner
manufacturer, the material densities were measured in the one-step
case (A5, A0 = (5000, 0.5).

Conventional Water map Iodine map
Material : (HU) (mg ml™") (mgml™")
PE —90 +970 —2.0
Todine +95 41020 +2.0

concentration was measured in the iodine map. Additionally, the spatial resolution and the noise level were
measured in both maps (water and iodine). They were evaluated individually for each slice and then averaged on
20 slices.

The iodine concentration was measured in a 50 mm diameter region-of-interest (ROI) at the center of the
iodine insert. Thanks to the water/iodine MD, the voxel values of the iodine map directly provide the
concentration of the iodine solution in mg/ml.

The spatial resolution was measured as the frequency corresponding to a task transfer function (TTF) value
of 10% ( frre100)> evaluated on the PE/iodine transition (red dashed circle in figure 2) using the circular rod
method (Samei et al 2019). The edge spread function (ESF) was modeled by an error function to facilitate the
TTF computation (Richard et al 2012).

The noise level was measured in the iodine insert. A 90 mm diameter circular ROI was placed at the center of
the iodine insert and the noise was measured with the standard deviation of the voxel intensities in the iodine
module.
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Table 2. Iodine concentration (mg/ml).

TS 0S A3 = 0.0 0S A% = 0.1 0S A = 0.5 0SASS = 2.0
M5 =10 1.99 1.96 1.97 1.98 1.98 XS =1
NS =50 2.00 1.97 1.98 1.98 1.98 A8 = 1000
S = 100 2.01 1.98 1.99 1.99 1.99 AP = 3000
S = 200 2.02 2.00 2.00 2.00 2.00 XS = 6000
APS = 300 2.02 2.01 2.01 2.01 2.01 APS = 10000

2.7. Comparison of three specific phantom cases

From the various reconstruction cases, each with a different set of regularization parameters as described in the
next section, three were selected for further comparison: a two-step regularization level and two one-step
combinations of regularization weights, providing either the same frrg199, Or the same noise level as the selected
two-step case. The noise power spectrum (NPS) and the TTF curve in the iodine volume were evaluated for these
three cases only. The TTF curve was derived from the fitted error function (Richard et al 2012). For the NPS
evaluation, a second order polynomial was fitted to the image and then subtracted from each slice to obtain a
white noise image. The NPS was then evaluated from 64 x 64 voxels ROIs (Samei et al 2019), with 10 ROIs per
slice, resulting in a total of 200 ROIs.

2.8.Patient data

Four patients underwent a routine low dose carotid CTA (mean age: 67.7 &= 7.7 years, body mass index:

23.5 & 2.7 kg m ™) with iodine contrast agent injection (Boccalini et al 2021). The injected iodine contrast agent
(Iomeprol, lomeron 400, Bracco Imaging, Milan, Italy) concentration was 300 mg ml~". A volume of 40 ml was
injected, followed by the injection of 20 ml of a saline solution. The system was operated with the same binning
and threshold configuration as for the phantom acquisitions. The reconstructed voxel size was also set to the
same value: 0.25 x 0.25 x 0.5 mm. The images were acquired with a 120 mm helical trajectory (pitch = 1.17),
0.33 srotation time, 80 mA current and 120 kV tube voltage. This represents 25% of the normal dose for the
recommended carotid CTA protocol.

The regularization parameter of the iodine image of the two-step method was selected to match the noise
level of the iodine map in the clinical CTA protocol (Boccalini et al 2021). Then a water/iodine MD was
computed with both methods with the regularization parameters providing equivalent spatial resolution levels
in the iodine map on the phantom data. From the reconstructed water/iodine MD CT images, virtual mono-
energetic images (VMIs) were computed at 40, 50, 60, 70 and 80 keV. For the reconstruction of the water
sinogram in the two-step method, different regularization levels were investigated. The water regularization
parameter was set to a value providing a trade-off for the noise in the VMIs at the different energies.

One radiologist with 7 years of experience, blinded to image type and patient’s identity, reviewed all images
independently in a random order. Changes in image and window settings were allowed according to personal
preferences. The reviewer scored the images independently using a 5-point quality score (1: insufficient, 5:
excellent), according to different criteria defined in a prior work about coronary CTA (Si-Mohamed et al 2022).
Imaging quality criteria were assessed in all VMIs and the iodine image: overall quality, noise and sharpness.
Additionally, three CCTA diagnostic tasks were evaluated in all VMIs: visualisation of vessel lumen, calcified and
non calcified plaque (Weigold et al 2011, Leipsic et al 2014). In the iodine image, only one clinical task was
assessed: the vessel lumen visualization. A patient’s CT scan was considered of sufficient diagnostic quality if
overall image quality score was higher than 3.

For comparison purposes, the overall mean score were computed and graphically displayed. An image per
image improvement percentage was also computed.

3. Results

3.1. Spectral quantification
The accuracy and the convergence were assessed for each reconstruction. The measured iodine concentrations
are presented in table 2 for various regularization parameters including extreme values.

The maximum iodine concentration deviation between two cases is 0.06 mg ml~", corresponding to 3% of
the theoretical value. This value is below the dilution accuracy and can be considered negligible. Based on past
evaluations of one-step reconstruction (Mory et al 2018), this indicates that the different algorithms have
reached convergence.
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Figure 3. Noise/spatial resolution trade-off for various reconstructed cases with different values of the regularization parameters. The
image quality improves with increasing abscissa and decreasing ordinates, i.e. towards the bottom right corners of the plots. The blue
number attached to the data points of the blue curve are the two-step regularization weights. As the two-step reconstructions are
independent, each blue point is only characterized by one value: the values displayed in the water map (left graph) are A{$ and in the
iodine map (right graph): Af>. The red points are representing each one-step reconstruction and each one is characterized by two
values: \P® indicated as a red number in the graph and A3? in the legend. The cases squared in the plots were selected for further
analysis.

3.2.Regularization parameters

The trade-off between spatial resolution, measured with frr; e, and the noise level is presented for both
techniques in figure 3 for the water map (left graph) and the iodine map (right graph). These results were
assessed following the application of a ring artifact correction. In figure I of the supplemental material, the same
results were obtained both before and after the correction in the iodine map for a subset of the data points
presented in figure 3. This demonstrates that the correction equally impacts two-step and one-step images at
identical noise and spatial resolution levels. Each point displayed in figure 3 represents a reconstruction
characterized by one or two regularization parameters for the two-step and one-step methods, respectively. It is
visible that one-step reconstruction has the potential to improve spatial resolution for the same noise level as
two-step reconstruction, or that it can decrease the noise at the same frrg1 09, value. As the targeted clinical task is
the lumen vessel visualization, the trade-off is more visible in the iodine map and the measured spatial frequency
is smaller in the water map. For the smallest regularization levels (\’° € [1, 3000]), one-step reconstruction
reduces more the noise in the water map for the same resolution loss compared to the two-step method (i.e. the
curve slope is steeper in this region). The frrg; g, evaluated in the water map are smaller because of the lower
amount of contrast present in this material map (see figure 2).

Itis also visible that the water and iodine regularization weights of one-step reconstruction are linked: the
iodine image quality improves when increasing the regularization of water by increasing Ay . However, a too
strong regularization difference between the water and iodine weights is not recommended because it can lead to
a cross-talk effect. For example, for the one-step cases with A’ = 4000 (see dashed black curve in figure 3 right),
the noise is decreased from Ay = 0.0 to A0 = 0.1butis then increased for higher values of \o7. The cross-talk
also negatively impacts the water map (left graph) with aloss of spatial resolution for a high water parameter
(Y = 2.0) compared to the same iodine regularization levels at lower water parameter values. Two cases with a
large weight difference are shown in supplemental material figure III(a) and figure III(b).

For the CTA clinical task, the water map is not directly read by the radiologist. However, it impacts the VMI
that will be read. In order to select the water regularization parameter in the two-step method, the noise was
measured in the VMIs. The parameter A\I° = 100 corresponds to the noise reduction level of the clinical
protocol. For this parameter, the noise in the iodine insert in the VMIs is displayed in figure 4 as a function of the
water regularization parameter \L7. The behaviour is different depending on the energy: for the lowest energies
(40 and 50 keV), the noise increases with the water regularization parameter. At other energies (60, 70 and
80 keV), the noise starts by decreasing when the water parameter increases before increasing at the highest
values. In the CTA clinical task, the VMIs at the lowest energies are critical because of the iodine signal. The water
regularization parameter value Ay = 20 is a trade-off between limiting the noise at 40 and 50 keV while
providing a noise reduction at 60, 70 and 80 keV.

3.3. Comparison of the three selected phantom cases
The cases framed in figure 3 have been selected for further comparison: a two-step case with a regularization
level of ATS of 100 and two one-step cases corresponding to the same noise and spatial resolution, with
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Figure 4. Noise in the iodine insert for VMIs computed at 40, 50, 60, 70 and 80 keV for different two-step water regularization
parameters Aly. The iodine regularization parameter was kept constant J> = 100. The gray line represents the selected water
regularization parameter Afy = 20.
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Figure 5. Iodine and water maps of the insert for three different reconstructions: a two-step case in the middle, a one-step case at the
same resolution in the iodine map on the left and the same noise level in the iodine map on the right. The water maps do not have
matching noise or spatial resolution. Theses cases correspond to the values framed in figure 3.

regularization weights (A, AP%) of (0.5, 1500) and (0.1, 5000), respectively. The highest water regularization
levels were not selected for comparison because the cross talk effect between materials discussed above was
visible.

The water and iodine maps corresponding to these three cases are displayed in figure 5. The different noise
textures are visible. The one-step reconstruction displays a finer noise texture enabling a lower noise level for the
same resolution or an improved resolution at the same noise level. In the water volumes, the contrast is less
visible but differences are visible in the noise textures.

For the patient analysis, the radiologist has evaluated the imaging and diagnostic scores on the iodine map
and the VMIs. The 40 and 80 keV VMIs are displayed in figure 6 for the three selected cases. The differences
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Figure 6. VMIs computed at 40 and 80 keV for the three selected cases displayed in figure 5. The values displayed in yellow are the
noise values (HU) evaluated in the iodine insert.
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Figure 7. Left: NPS evaluated for the three selected cases of figure 5. The area under the curves are indicated in the legend. These areas
measure the noise level. Right: Task transfer functions (TTFs) curves for the three selected cases. These curves were evaluated in the
iodine maps.

between the two techniques are greater at 40 keV where the iodine map has a higher weight. Even if the one-step
images have been computed with regularization parameters leading to lower noise levels in the water/iodine
MD, the resulting noise is smaller in the VMIs at 40 keV and the noise texture is finer.

The NPS of the iodine maps was calculated to evaluate the noise texture. The NPS is plotted in the left panel
of figure 7. When the noise is at a similar level (i.e. same area under the curve), the one-step method better
preserves high frequencies than the two-step method. This translates into a higher NPS in the high-frequency
region. Increasing the regularization will lead to the case at matching frrr; 0o, Where the high frequencies are
similar to the two-step method but low-frequencies are reduced in the one-step iodine map. This quantitatively
illustrates differences in noise texture with finer details better preserved by the one-step algorithm, as observed
in the iodine maps in figure 5 (top row).

Finally, the TTF are presented in the right panel of figure 7. The reconstructed images with the same spatial
resolution have similar curves. However, the one-step reconstruction matching the two-step noise level has an
improved TTEF.
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Figure 8. Example case of a carotid spectral photon-counting CT angiography in a 68-years-old man using VMIs at 40 keV and 70 keV
and iodine images. The one-step spectral images enable a better depiction of a severe carotid stenosis associated with a calcified plaque
in comparison to the two-step images (zoomed areas).
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Figure 9. Detailed image quality and diagnostic scores for the iodine images and VMIs for the two-step method (left) and one-step
(right) methods.

3.4. Patient imaging scores

The parameters selected for the patient analysis based on the phantom results were (A, Aly) = (100, 20) for
the two-step algorithm. These parameters lead to a noise level similar to the clinical protocol in the iodine map
and a trade-off between VMIs at different energies (figure 6). For the one-step algorithm, the selected parameters
were (A5, A9%) = (0.1, 5000). These values match the spatial resolution of the iodine map of the two-step
method (figure 3) without visual cross-talk effect. The resulting images are displayed in figure 8.

The contrast level in a VMI depends on the computed energy and increases when the energy decreases
(figure 8). VMI at low energies have already demonstrated enhancement of the vessel lumen and potential
reduction of contrast administration (McCollough et al 2020). As a result, the VMI at 40, 50 and 60 keV
presented the greatest score for the two-step method.

The mean score of the iodine image overall quality was 1.7 £ 0.5 and 4.2 =+ 0.9 for the two-step and one-step
algorithms, respectively (figure 9). The iodine image score for the implemented two-step algorithm was below
the threshold for clinical use in all cases. However, the VMIs computed from these iodine images present closer
evaluations with a mean score of 3.3 + 0.5 for the two-step method and 4.4 + 0.5 for the one-step method
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Table 3. Percentages of patient with a score improvement with the one-step method compared to the two-step
method. N/A: Non Available, only the vessel lumen clinical task was evaluated in iodine maps.

Criterion 40 keV 50 keV 60 keV 70 keV 80 keV TIodine
Image quality—Overall 100% 100% 100% 100% 100% 100%
Image quality—Noise 100% 100% 100% 100% 100% 100%
Image quality—Sharpness 100% 100% 100% 100% 100% 100%
Diagnostic—Vessel lumen 75% 75% 75% 100% 100% 100%
Diagnostic—Calcified plaque 100% 100% 100% 100% 100% N/A
Diagnostic—Non-calcified plaque 75% 75% 75% 75% 75% N/A

(averaged over all VMISs). This indicates that the VMIs are above the acceptable threshold even if the iodine
image is not.

Similar observations of the noise scores were made for the iodine image with a mean score of 1.7 £ 0.5 (two-
step) and 3.7 = 0.5 (one-step) compared to a mean VMI score of 2.9 & 0.2 (two-step) and 4.0 &= 0.0 (one-step).
For the sharpness score, the levels in the iodine image were 1.7 & 0.5 (two-step) and 4.2 = 0.9 (one-step) and,
averaged over all VMIs, 3.2 + 0.4 (two-step) and 4.0 £ 0.0 (one-step).

The percentages of patients with a score improvement are displayed in table 3. The one-step method has
improved the image quality criteria in all images. This led to an improvement of diagnostic task scores in most
cases except at lower VMI energies (40, 50 and 60 keV) were the two-step method provided acceptable to good
scores for one patient.

4. Discussion

The evaluation of phantom data has shown that the one-step method can improve image quality compared to
the selected two-step method even with the same spatial regularizer. The one-step algorithm can either provide a
better spatial resolution at the same noise level or alower noise level at the same spatial resolution in the material
decomposed images. The NPS curves in section 3.3 illustrate that the one-step method preserves the high spatial
frequencies for the same noise level. However, the one-step algorithm requires alonger computation time.

Indeed, the selected two-step algorithm operates the MD on a pixel-by-pixel basis which is very efficient
regarding computation time. More sophisticated methods could have been used, e.g. with a regularization term
on the sinograms or using a joint reconstruction of the decomposed basis material sinograms. This would have
increased the computation time and/or the number of parameters to tune and the focus of this work was the
comparison with a two-step reconstruction algorithm with a similar spatial regularization term. One limitation
of this comparison lies in the absence of a dedicated evaluation of ring artifacts, which might differ between the
two-step and one-step strategies. In this study, a post-processing ring artifact correction was applied to both
approaches. However, further ring corrections could be investigated but would be specific to each method. For
example, the one-step scheme could be improved with the modification of the spectral model (equation (2)) to
correct for ring artifacts during the reconstruction process (Schmidt et al 2017). Figure 3 illustrates how a one-
step scheme has the ability to reduce noise while preserving spatial resolution. On clinical spectral CTs, the
selected two-step scheme is coupled with image post-processing to improve image quality which could also be
applied to one-step images.

Because the computation time of the one-step implementation was not optimized, we do not provide the
computation time of the two techniques but the one-step algorithm is significantly more computationally
demanding than the two-step algorithm. A limitation of the current work is that the implemented two-step
algorithm is different from the clinical two-step algorithm. Indeed, the reconstruction algorithm is a model-
based technique which, to our knowledge, is not currently employed in clinical scanners. Another limitation is
the difference in noise texture compared to FBP images. This would modify the NPS curves presented in figure 7.
FBP images are also characterized by streak artifacts whereas model-based reconstructions will present patchy
images with strong spatial regularization.

For the one-step method, the quantitative measurements of the phantom images have demonstrated how the
regularization level applied to a material map can impact the other basis material map. The choice of regularization
parameters is more complicated to avoid this cross-talk effect between material maps and it can impact both spatial
resolution at an edge between two materials and the spectral separation between the two material density maps.
The cross-talk impact could be further studied with other iodine concentrations. The clinical analysis was not
made on the reconstructed water volume. However, the latter has an impact on the reconstructed VMIs. This
impact is different for the two-step or the one-step method. The pre-reconstruction MD two-step methods
provide an anti-correlated noise between the water and iodine maps (Persson and Gronberg 2017).
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Indeed, for the regularization parameters applied to the patient data, the Pearson correlation coefficients were
-0.91 and -0.13 for the two-step and the one-step methods, respectively. The two-step maps have a stronger
covariance with anti-correlated noise and these noise properties will have different impact depending on the VMI
computation (Leng etal 2015) (see figure 4). This complicates the comparison of the two techniques on VMIs as
regularization parameters that lead to similar properties in material maps would lead to different VMI noise
properties. This means that there is not an optimal set of parameters leading to a fair comparison of VMIs at all
energies for the two techniques. The choice has been made in this study to focus on the iodine map comparison
(see figure 3), as this map is a direct result of the MD problem.

The phantom data were acquired at a conventional dose for clinical CT. The quantitative results could vary
and the difference between the one-step and the two-step methods may be even larger at lower dose or at a
smaller iodine concentration in the CTA insert. The scanner was operated with a2 x 2 binning, which provides
aslightly smaller detector pixel size at the isocenter (0.55 mm) compared to average commercial DE-CTs
(0.6-0.75 mm). The results of this study indicate that the one-step algorithm could reconstruct spectral images
at the full PCD-CT spatial resolution and low-dose. New CTA protocols are also investigated with the injection
of K-edge contrast agents (Si-Mohamed et al 2021). This would require a three-material basis MD with a
potential noise increase which might be better mitigated with the one-step method than with the two-step
method.

The clinical purpose of CTA protocols is the depiction of the calcified plaques around the carotid artery (see
supplemental figure I). This protocol benefits from an increased spatial resolution and the patient data were
acquired with alow-dose protocol. In this context, the one-step algorithm presented a good overall image
quality score in the iodine maps. This shows that the one-step method can enable spectral reconstruction at a
low irradiation dose. The VMISs reconstructed with the selected two-step method take advantage of the
correlated noise in the iodine and water maps and present at some energy an acceptable image quality. The VMIs
computed with the one-step method still had higher image quality and diagnostic scores.

The phantom used in this work was specifically designed to reproduce the CTA diagnostic task. The impact
of the regularization parameters would be different for a different task. Moreover, the basis materials choice
(iodine and water) depends on the clinical task and would be different. For example, a calcium and water basis
would be selected in the absence of a contrast agent injection or the photo-electric and compton energy
functions to evaluate the atomic number. Nevertheless, the image quality metrics measured on the phantom
acquisitions presented a correlation with the scores evaluated by an experienced radiologist. This correlation
could be extended from the evaluated NPS and TTF properties to other clinical tasks. A detectability index
associated to a model observer could be computed (Solomon et al 2015, Rotzinger et al 2021) to further
investigate the correlation between these metrics and the radiologist scores in a study including more patients
and several radiologists. The presented phantom methodology is relevant to compare spectral imaging
algorithms and set the regularization weights of the iterative reconstruction methods to, eventually, improve
image quality in patient studies.

5. Conclusions

The presented one-step method improved image quality compared to a reference two-step algorithm. The noise
and spatial resolution improvements were measured on phantom data designed for the CTA clinical task. This
translated into higher image quality and diagnostic scores evaluated by a radiologist on patient images. This
demonstrates that the one-step method can be used atlow doses to reconstruct spectral CT images with a high
spatial resolution while maintaining a low noise level.
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