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Abstract
Objective. X-ray spectral computed tomography (CT) allows formaterial decomposition (MD). This
study compared a one-stepmaterial decompositionMDalgorithmwith a two-step reconstruction
MDalgorithmusing acquisitions of a prototype CT scanner with a photon-counting detector (PCD).
Approach.MD andCT reconstructionmay be done in two successive steps, i.e. decompose the data in
material sinogramswhich are then reconstructed inmaterial CT images, or jointly in a one-step
algorithm. The one-step algorithm reconstructedmaterial CT images bymaximizing their Poisson
log-likelihood in the projection domainwith a spatial regularization in the image domain. The two-
step algorithmmaximizedfirst the Poisson log-likelihoodwithout regularization to decompose the
data inmaterial sinograms. These sinogramswere then reconstructed intomaterial CT images by least
squaresminimization, with the same spatial regularization as the one step algorithm. A phantom
simulating theCT angiography clinical taskwas scanned and the data used tomeasure noise and
spatial resolution properties. Lowdose carotid CT angiographies of 4 patients were also reconstructed
with both algorithms and analyzed by a radiologist. The image quality and diagnostic clinical taskwere
evaluatedwith a clinical score.Main results. The phantomdata processing demonstrated that the one-
step algorithmhad a better spatial resolution at the same noise level or a decreased noise value at
matching spatial resolution. Regularization parameters leading to a fair comparisonwere selected for
the patient data reconstruction. On the patient images, the one-step images received higher scores
compared to the two-step algorithm for image quality and diagnostic. Significance. Both phantomand
patient data demonstrated how a one-step algorithm improves spectral CT image quality over the
implemented two-step algorithmbut requires a longer computation time. At a low radiation dose, the
one-step algorithmpresented good to excellent clinical scores for all the spectral CT images.

1. Introduction

Photon-counting detector computed tomography (PCD-CT) represents amilestone inmedical imaging
(Danielsson et al 2021, Rajendran et al 2021, Si-Mohamed et al 2021). Compared to energy-integrating detectors
(EIDs), PCDs improve the spatial resolution for the same dose level and enable low-dose clinical protocols.
These improvements have been demonstratedwith conventional images, i.e. the CT image reconstructed from
the attenuation of all detected photons. The conventional image is traditionally reconstructed withfiltered back-
projection (FBP) for EID-CT and PCD-CT. The improved resolution andnoise properties come from the
detection technology.

PCDs and dual-energy (DE)EIDs also provide spectral images (McCollough et al 2020) but spectral images
inherently suffer from a higher noise level than conventional imaging.While the reconstruction algorithm is
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rather similar betweenCT systems in conventional imaging, different strategies have been adopted to
reconstruct the spectral images and fundamentally different algorithms have been developed.

Spectral x-ray imagesmeasure the energy variability of the attenuation coefficient of the patient. Inmost
cases, spectral CT uses themodel of (Alvarez andMacovski 1976)which describes the variations of the linear
attenuation coefficients with energy by the linear combination of a few basis functions.With thismodel, the
reconstruction of the energy-resolved CT image of a patient comes down to the reconstruction of two basis
material CT images (with an additional basismaterial CT image for eachK-edge contrast agent). Thismaterial
decomposition (MD) formulation combinedwith amulti-energymeasurement (performed either with a
DE-CTor a PCD-CT scanner) enablesmaterial identification and quantification.

In PCD-CT acquisitions, several thresholds are set to define a corresponding set of energy bins, each photon
detected by the detector being sorted in the bin corresponding to itsmeasured energy. Because of physical
phenomena in the detector (charge sharing, fluorescence escape, etc.), the PCD spectral response is imperfect
(Flohr et al 2020, Si-Mohamed et al 2021)which has to be taken into account in the reconstruction. The spectral
distortion is often accounted for duringMD.MDand tomographic reconstruction are the two sub-problems of
spectral CT reconstruction.

Different strategies have been developed to tackle spectral CT reconstruction. They can be classified into
three categories depending onwhenMDoccurs: pre-, post- or during tomographic reconstruction. Pre-
reconstruction techniques perform a projection-basedMD: basis sinograms are first decomposed from the
energy bins (Roessl and Proksa 2007) and then reconstructed into basis CT images. Thesemethods are
computationally efficient but it is difficult to implement noise reduction techniques in projection space and
crucial statistical information is lost afterMD. Post-reconstruction techniquesfirst reconstruct theCT image of
each energy bin (Maa et al 2009). However, these reconstructedCT images suffer frombeam-hardening artifacts
whichwill degrade the accuracy of the post-reconstructionMD. Finally, one-step (or joint) reconstruction
performs theMDand the tomographic reconstruction jointly. They directly reconstruct the basismaterial
volumes from themulti-energy projectionmeasurements, unlike pre- and post-reconstruction techniques
which havemultiple stepswith intermediate results.

All one-step algorithms are iterative unlike pre- and post-reconstructionmethodswhich can use FBP for
tomographic reconstruction. One advantage is that spatial regularization of thematerial CT imagesmay be used
while performing theMD.However, these techniques are computationallymore demanding and require an
efficient optimization algorithm. Several algorithms have been investigated for one-step reconstruction: non-
linear conjugate gradient (Cai et al 2013, Simard andBouchard 2022), separable quadratic surrogates (SQS)
(Long and Fessler 2014,Weidinger et al 2016,Mechlem et al 2017, Tilley et al 2019, Lee et al 2022, Liu et al 2022)
or algorithms based on proximal operators such as ADMM (Jolivet et al 2020, Schmidt et al 2022), Chambolle-
Pock (Barber et al 2016, Chen et al 2021) orVMILa (Tairi et al 2020). A previous comparative study (Mory et al
2018)has demonstrated that SQS combinedwithNesterov’smomentum is an efficient algorithm.

This study aimed at demonstrating the image quality improvement of one-step approaches over a pre-
reconstructionMDmethod, called two-step in the following. Existing one-step algorithms have been compared
to two-stepmethods (Mechlem et al 2017, Simard andBouchard 2022) but, to our knowledge, no study has
rigorously compared the image quality of one-step and two-stepmaterial decomposition strategies. In this
study, a one-step algorithm and a two-step algorithmwere selected from the literature and implemented.
Aiming at a comparison as fair as possible, the two-stepmethod uses iterative tomographic reconstructionwith
the same spatial regularization as the one-stepmethod. In a similar study limited to simulated data, one-step
reconstruction has already demonstrated its potential to reducemetal artifacts compared to a two-stepmethod
(Schmidt et al 2022). Here, experimental data acquiredwith a full field-of-view (FOV) (500 mm) clinical
prototype PCD-CT are used (Si-Mohamed et al 2023).We propose amethodology to select the hyperparameters
ofmodel-based algorithms from empiricalmeasurements leading to a fair comparison of bothmethods before
applying it to patient data. Only a few one-stepmethods have been applied to patient data and this study
demonstrates that they can facilitate the diagnosis on spectral images.

Thefirst part of this work investigates different regularization strengths for the twomethods to select
parameters yielding the same level of noise or the same spatial resolution. Image qualitymetrics are then
evaluated and compared. In a second part of this work, patient data were reconstructed and analyzed by
radiologists for a specific clinical task: carotid angiography.

2.Material andmethods

2.1. Spectral forwardmodel
The same forward spectralmodel was inverted in the two-step or one-stepmethods forMD. Thismodel
estimates the photon count Cib in the energy bin b at the detector pixel i from the scanned object attenuation:
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min andTb

max are respectively the lower and upper thresholds defining the energy bin b, kVp is the tube
voltage value, SResp the spectral response, and atti the attenuation. The spectral response includes the PCD
response and the incident source spectrum.

In the following, a discretized notation of thismodel is usedwhere the spectral response is a discretized
spectrumper bin:
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This forwardmodel is based on the assumption that the PCDbehavior is linear. Non-linearities such as pile-up
effects or scatter are neglected. It also relies on an accurate knowledge of the spectral response, in order to avoid
low and high frequency artifacts (Feng et al 2021).

Using themodel of (Alvarez andMacovski 1976), the attenuation is decomposed into several basismaterial
lengths in the two-stepmethod:
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whereNm is the number of basismaterials, l is the concatenated vector representing the basismaterial sinograms
(withm thematerial index) andμme the attenuation coefficient of the basismaterial.

For the one-stepmethod, the attenuation is decomposed into several basismaterial densities:
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where f is the concatenated vector representing the basismaterial volumes andA is the projectionmatrix to
compute amaterial sinogram from amaterial volume fm.

2.2. Two-stepmethod
The two-stepMDwas implemented in a projection-based scheme (Roessl and Proksa 2007)which computes in
afirst step thematerial sinograms from the PCDdata bymaximizing pixel by pixel the Poisson log-likelihood of
measuring cib counts after traversing li lengths ofmaterials:
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combines equation (2) and (3). Given the pixel by pixel formulation, this log-likelihood is a function ofNm

scalars and is a small optimization problem (Nm being equal to 2 in this work). The argument of themaximum
was computedwith theNelder-Mead downhill simplex algorithm (Nelder andMead 1965).

In a second step, the basismaterial sinogramswere used independently as input of a conjugate gradient (CG)
algorithm (Nocedal 2006)minimizing the penalized least-square difference between the decomposed sinograms
and the projections of the reconstructedmaterialmap:
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whereNp is the number of detector pixels,R( fm) is a spatial regularization term and lm
TS is the regularization

weight defined for each basismaterial. The spatial regularization is defined by:
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where j is the voxel index,Nv is the number of voxels in thematerial volume andNj is the set of neighbouring
voxels of the j-th voxel. In this study,f is theGreen prior function (Green 1990)which approximates the
absolute value function and is twice differentiable:
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2.3.One-stepmethod
The one-stepmethod reconstructs directly thematerial volumes from themeasured counts. The implemented
method also used the Poisson log-likelihood as in equation (5) but as a function of thematerial volumes f:
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combines equation (2) and (4) andR( fm) is the same regularization term as in equation (8)with lm
OS the

associatedweights. Since thematerial volumes are jointly reconstructed, the regularization of onematerialmap
will impact the others. In contrast, the two-step algorithm reconstructs eachmaterialmap independently and
the regularization of one volumewill not impact the others. This is a crucial difference between the two
techniqueswhichwas accounted for in the followingwhen adjusting the regularization parameters lm

TS and lm
OS.

The Poisson log-likelihoodwasmaximized using the SQS-based algorithmdeveloped by (Weidinger et al
2016)with twomodifications to accelerate the convergence, the use of ordered subsets (Hudson and
Larkin 1994) and ofNesterov’smomentum technique (Nesterov 2005). The projections were randomly sorted
into 8 subsets andNesterov’smomentumwas reset every 50 iterations (i.e. every 400 updates). Finally, the one-
stepmethodmay be unstable at the superior and inferior ends of theCT image.We used the correction
described by (Rodesch et al 2020) based on spatial regularizationweights. Thismethod increases the spatial
regularization at the superior and inferior extremities where each voxel is seen by fewer projection pixels.

2.4. PCD-CT scanner
The two-step and one-stepmethodswere implementedwithin theReconstruction Toolkit (RTK) (Rit et al 2014)
and tested on real datameasuredwith a PCT-CT scanner (SPCCT, PhilipsHealthcare, Haifa, Israel). This pre-
clinical prototype has a 500 mmFOV, a 1.825magnification factor and a Z-coverage of 17.6 mm (Si-Mohamed
et al 2023). Projections were acquiredwith a 5 energy bins PCD-CT scanner. It was operated in a 2× 2 binning
mode, resulting in a 0.55 x 0.55 mmpixel size at the isocenter and 32× 924 (binned) pixels per projection, in
axialmode for the phantom acquisitions and in helicalmode for the patient protocol. In bothmodes, 2400
projections per rotationwere acquired but the source parameters were set to different values, as described in the
following.

Prior to all acquisitions, images of a stepwedgewere acquired to calibrate the spectral response SResp

(equation (2)) for the selected source parameters (voltage and current). This procedure has been developed by
the systemmanufacturer. Additionally, a post-processing routine is also provided by themanufacturer to
correct for concentric ring artifacts in thematerial densitymapswhichwas applied to all reconstructed images.
The assumption ismade that this correction equally affects the two-step and one-step images whichwas
validated empirically.

2.5. Phantomgeometry
A100mmdiameter cylindricalmodule (figure 1)was placed in an anthropomorphic thorax phantom (QRM,
Moehrendorf, Germany). Thismodule was designed to reproduce the contrast of a coronary CT angiography
(CTA)protocol. The thorax phantom simulates the attenuation of the chest of a small human adult and its
height is 10 cm. The same phantomwas used previously to compare the quality of PCD-CT conventional images
with state-of-the-art DE-CT (Rotzinger et al 2021). It ismade of polyethylene (PE)with a 50 mmdiameter hole,
filledwith iodine at 2 mg/ml concentration. The phantomwas scannedwith an axial protocol (rotation time:
1 s), a 120 kVp tube voltage and 80 mA current. The thresholds were set to 30/51/62/72/81 keV.MDCT
imageswere reconstructedwith bothMDmethods and a 0.25× 0.25× 0.5 mmvoxel size. The reconstructed
FOVwas 500× 500× 10 mm.

2.6. Evaluationmetrics
The PE and iodine have close densities in thewatermap (respectively 970 and 1020 mgml−1, see table 1). The
contrast between the PE and the iodine, dominant in the iodineCT image, is about 4 mg/ml. This corresponds
to theCTA clinical task (see figure 2 and supplemental figure I). Thewater/iodineMDwas computed for each
methodwith various values of the regularization parameters. For each regularization parameter, the iodine
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concentrationwasmeasured in the iodinemap. Additionally, the spatial resolution and the noise level were
measured in bothmaps (water and iodine). Theywere evaluated individually for each slice and then averaged on
20 slices.

The iodine concentrationwasmeasured in a 50 mmdiameter region-of-interest (ROI) at the center of the
iodine insert. Thanks to thewater/iodineMD, the voxel values of the iodinemap directly provide the
concentration of the iodine solution inmg/ml.

The spatial resolutionwasmeasured as the frequency corresponding to a task transfer function (TTF) value
of 10% ( fTTF10%), evaluated on the PE/iodine transition (red dashed circle infigure 2) using the circular rod
method (Samei et al 2019). The edge spread function (ESF)wasmodeled by an error function to facilitate the
TTF computation (Richard et al 2012).

The noise level wasmeasured in the iodine insert. A 90 mmdiameter circular ROIwas placed at the center of
the iodine insert and the noise wasmeasuredwith the standard deviation of the voxel intensities in the iodine
module.

Figure 1.Photograph of theCTAmodule placed inside theQRManthropomorphic thorax phantom.

Figure 2. Left: conventional image of the anthropomorphic phantom. Right: water/iodineMDCT images of theCTAmodule. The
dashed circle indicates the PE/iodine transition used for the assessment of the spatial resolution.

Table 1.Mean values of the PE and iodine solutionmeasured in the
conventional and thewater/iodineMDCT images. HUnumberswere
measured in the conventional image reconstructed by the scanner
manufacturer, thematerial densities weremeasured in the one-step
case l l =, 5000, 0.5I

OS
W
OS( ) ( ).

Material :

Conventional

(HU)
Watermap

(mg ml−1)
Iodinemap

(mg ml−1)

PE −90 +970 −2.0

Iodine +95 +1020 +2.0
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2.7. Comparison of three specific phantom cases
From the various reconstruction cases, eachwith a different set of regularization parameters as described in the
next section, threewere selected for further comparison: a two-step regularization level and two one-step
combinations of regularizationweights, providing either the same fTTF10% or the same noise level as the selected
two-step case. The noise power spectrum (NPS) and theTTF curve in the iodine volumewere evaluated for these
three cases only. The TTF curvewas derived from the fitted error function (Richard et al 2012). For theNPS
evaluation, a second order polynomial was fitted to the image and then subtracted from each slice to obtain a
white noise image. TheNPSwas then evaluated from64 x 64 voxels ROIs (Samei et al 2019), with 10 ROIs per
slice, resulting in a total of 200 ROIs.

2.8. Patient data
Four patients underwent a routine lowdose carotid CTA (mean age: 67.7± 7.7 years, bodymass index:
23.5± 2.7 kg m−2)with iodine contrast agent injection (Boccalini et al 2021). The injected iodine contrast agent
(Iomeprol, Iomeron 400, Bracco Imaging,Milan, Italy) concentrationwas 300 mgml−1. A volume of 40 mlwas
injected, followed by the injection of 20 ml of a saline solution. The systemwas operatedwith the same binning
and threshold configuration as for the phantomacquisitions. The reconstructed voxel size was also set to the
same value: 0.25 x 0.25 x 0.5 mm.The images were acquiredwith a 120 mmhelical trajectory (pitch= 1.17),
0.33 s rotation time, 80 mA current and 120 kV tube voltage. This represents 25%of the normal dose for the
recommended carotidCTAprotocol.

The regularization parameter of the iodine image of the two-stepmethodwas selected tomatch the noise
level of the iodinemap in the clinical CTAprotocol (Boccalini et al 2021). Then awater/iodineMDwas
computedwith bothmethodswith the regularization parameters providing equivalent spatial resolution levels
in the iodinemap on the phantomdata. From the reconstructed water/iodineMDCT images, virtualmono-
energetic images (VMIs)were computed at 40, 50, 60, 70 and 80 keV. For the reconstruction of thewater
sinogram in the two-stepmethod, different regularization levels were investigated. Thewater regularization
parameter was set to a value providing a trade-off for the noise in theVMIs at the different energies.

One radiologist with 7 years of experience, blinded to image type and patient’s identity, reviewed all images
independently in a randomorder. Changes in image andwindow settings were allowed according to personal
preferences. The reviewer scored the images independently using a 5-point quality score (1: insufficient, 5:
excellent), according to different criteria defined in a prior work about coronary CTA (Si-Mohamed et al 2022).
Imaging quality criteria were assessed in all VMIs and the iodine image: overall quality, noise and sharpness.
Additionally, three CCTAdiagnostic tasks were evaluated in all VMIs: visualisation of vessel lumen, calcified and
non calcified plaque (Weigold et al 2011, Leipsic et al 2014). In the iodine image, only one clinical taskwas
assessed: the vessel lumen visualization. A patientʼs CT scanwas considered of sufficient diagnostic quality if
overall image quality scorewas higher than 3.

For comparison purposes, the overallmean scorewere computed and graphically displayed. An image per
image improvement percentage was also computed.

3. Results

3.1. Spectral quantification
The accuracy and the convergence were assessed for each reconstruction. Themeasured iodine concentrations
are presented in table 2 for various regularization parameters including extreme values.

Themaximum iodine concentration deviation between two cases is 0.06 mgml−1, corresponding to 3%of
the theoretical value. This value is below the dilution accuracy and can be considered negligible. Based on past
evaluations of one-step reconstruction (Mory et al 2018), this indicates that the different algorithms have
reached convergence.

Table 2. Iodine concentration (mg/ml).

TS OS l = 0.0W
OS OS l = 0.1W

OS OS l = 0.5W
OS OS l = 2.0W

OS

l = 10I
TS 1.99 1.96 1.97 1.98 1.98 l = 1I

OS

l = 50I
TS 2.00 1.97 1.98 1.98 1.98 l = 1000I

OS

l = 100I
TS 2.01 1.98 1.99 1.99 1.99 l = 3000I

OS

l = 200I
TS 2.02 2.00 2.00 2.00 2.00 l = 6000I

OS

l = 300I
TS 2.02 2.01 2.01 2.01 2.01 l = 10000I

OS
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3.2. Regularization parameters
The trade-off between spatial resolution,measuredwith fTTF10%, and the noise level is presented for both
techniques infigure 3 for thewatermap (left graph) and the iodinemap (right graph). These results were
assessed following the application of a ring artifact correction. Infigure I of the supplementalmaterial, the same
results were obtained both before and after the correction in the iodinemap for a subset of the data points
presented infigure 3. This demonstrates that the correction equally impacts two-step and one-step images at
identical noise and spatial resolution levels. Each point displayed infigure 3 represents a reconstruction
characterized by one or two regularization parameters for the two-step and one-stepmethods, respectively. It is
visible that one-step reconstruction has the potential to improve spatial resolution for the same noise level as
two-step reconstruction, or that it can decrease the noise at the same fTTF10% value. As the targeted clinical task is
the lumen vessel visualization, the trade-off ismore visible in the iodinemap and themeasured spatial frequency
is smaller in thewatermap. For the smallest regularization levels (l Î 1, 3000I

OS [ ]), one-step reconstruction
reducesmore the noise in thewatermap for the same resolution loss compared to the two-stepmethod (i.e. the
curve slope is steeper in this region). The fTTF10% evaluated in thewatermap are smaller because of the lower
amount of contrast present in thismaterialmap (see figure 2).

It is also visible that thewater and iodine regularizationweights of one-step reconstruction are linked: the
iodine image quality improves when increasing the regularization of water by increasing lW

OS. However, a too
strong regularization difference between thewater and iodine weights is not recommended because it can lead to
a cross-talk effect. For example, for the one-step cases with l = 4000I

OS (see dashed black curve infigure 3 right),
the noise is decreased from l = 0.0W

OS to l = 0.1W
OS but is then increased for higher values of lW

OS. The cross-talk
also negatively impacts thewatermap (left graph)with a loss of spatial resolution for a highwater parameter
(l = 2.0W

OS ) compared to the same iodine regularization levels at lowerwater parameter values. Two cases with a
largeweight difference are shown in supplementalmaterial figure III(a) andfigure III(b).

For theCTA clinical task, thewatermap is not directly read by the radiologist. However, it impacts theVMI
thatwill be read. In order to select thewater regularization parameter in the two-stepmethod, the noise was
measured in theVMIs. The parameter l = 100I

TS corresponds to the noise reduction level of the clinical
protocol. For this parameter, the noise in the iodine insert in theVMIs is displayed infigure 4 as a function of the
water regularization parameter lW

TS. The behaviour is different depending on the energy: for the lowest energies
(40 and 50 keV), the noise increases with thewater regularization parameter. At other energies (60, 70 and
80 keV), the noise starts by decreasing when thewater parameter increases before increasing at the highest
values. In theCTA clinical task, theVMIs at the lowest energies are critical because of the iodine signal. Thewater
regularization parameter value l = 20W

TS is a trade-off between limiting the noise at 40 and 50 keVwhile
providing a noise reduction at 60, 70 and 80 keV.

3.3. Comparison of the three selected phantom cases
The cases framed infigure 3 have been selected for further comparison: a two-step case with a regularization
level of lI

TS of 100 and two one-step cases corresponding to the same noise and spatial resolution, with

Figure 3.Noise/spatial resolution trade-off for various reconstructed cases with different values of the regularization parameters. The
image quality improves with increasing abscissa and decreasing ordinates, i.e. towards the bottom right corners of the plots. The blue
number attached to the data points of the blue curve are the two-step regularizationweights. As the two-step reconstructions are
independent, each blue point is only characterized by one value: the values displayed in thewatermap (left graph) are lW

TS and in the
iodinemap (right graph): lI

TS. The red points are representing each one-step reconstruction and each one is characterized by two
values: lI

OS indicated as a red number in the graph and lW
OS in the legend. The cases squared in the plots were selected for further

analysis.
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regularizationweights l l,W
OS

I
OS( ) of (0.5, 1500) and (0.1, 5000), respectively. The highest water regularization

levels were not selected for comparison because the cross talk effect betweenmaterials discussed abovewas
visible.

Thewater and iodinemaps corresponding to these three cases are displayed infigure 5. The different noise
textures are visible. The one-step reconstruction displays afiner noise texture enabling a lower noise level for the
same resolution or an improved resolution at the same noise level. In thewater volumes, the contrast is less
visible but differences are visible in the noise textures.

For the patient analysis, the radiologist has evaluated the imaging and diagnostic scores on the iodinemap
and theVMIs. The 40 and 80 keVVMIs are displayed infigure 6 for the three selected cases. The differences

Figure 4.Noise in the iodine insert forVMIs computed at 40, 50, 60, 70 and 80 keV for different two-stepwater regularization
parameters lW

TS. The iodine regularization parameter was kept constant l = 100I
TS . The gray line represents the selectedwater

regularization parameter l = 20W
TS .

Figure 5. Iodine andwatermaps of the insert for three different reconstructions: a two-step case in themiddle, a one-step case at the
same resolution in the iodinemap on the left and the same noise level in the iodinemap on the right. Thewatermaps do not have
matching noise or spatial resolution. Theses cases correspond to the values framed infigure 3.
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between the two techniques are greater at 40 keVwhere the iodinemap has a higher weight. Even if the one-step
images have been computedwith regularization parameters leading to lower noise levels in thewater/iodine
MD, the resulting noise is smaller in theVMIs at 40 keV and the noise texture isfiner.

TheNPS of the iodinemapswas calculated to evaluate the noise texture. TheNPS is plotted in the left panel
offigure 7.When the noise is at a similar level (i.e. same area under the curve), the one-stepmethod better
preserves high frequencies than the two-stepmethod. This translates into a higherNPS in the high-frequency
region. Increasing the regularizationwill lead to the case atmatching fTTF10%, where the high frequencies are
similar to the two-stepmethod but low-frequencies are reduced in the one-step iodinemap. This quantitatively
illustrates differences in noise texture withfiner details better preserved by the one-step algorithm, as observed
in the iodinemaps infigure 5 (top row).

Finally, the TTF are presented in the right panel offigure 7. The reconstructed images with the same spatial
resolution have similar curves. However, the one-step reconstructionmatching the two-step noise level has an
improved TTF.

Figure 6.VMIs computed at 40 and 80 keV for the three selected cases displayed in figure 5. The values displayed in yellow are the
noise values (HU) evaluated in the iodine insert.

Figure 7. Left: NPS evaluated for the three selected cases of figure 5. The area under the curves are indicated in the legend. These areas
measure the noise level. Right: Task transfer functions (TTFs) curves for the three selected cases. These curves were evaluated in the
iodinemaps.
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3.4. Patient imaging scores
The parameters selected for the patient analysis based on the phantom results were l l =, 100, 20I W

TS TS( ) ( ) for
the two-step algorithm. These parameters lead to a noise level similar to the clinical protocol in the iodinemap
and a trade-off betweenVMIs at different energies (figure 6). For the one-step algorithm, the selected parameters
were l l =, 0.1, 5000I W

OS OS( ) ( ). These valuesmatch the spatial resolution of the iodinemap of the two-step
method (figure 3)without visual cross-talk effect. The resulting images are displayed infigure 8.

The contrast level in aVMI depends on the computed energy and increases when the energy decreases
(figure 8). VMI at low energies have already demonstrated enhancement of the vessel lumen and potential
reduction of contrast administration (McCollough et al 2020). As a result, theVMI at 40, 50 and 60 keV
presented the greatest score for the two-stepmethod.

Themean score of the iodine image overall quality was 1.7± 0.5 and 4.2± 0.9 for the two-step and one-step
algorithms, respectively (figure 9). The iodine image score for the implemented two-step algorithmwas below
the threshold for clinical use in all cases. However, theVMIs computed from these iodine images present closer
evaluationswith amean score of 3.3± 0.5 for the two-stepmethod and 4.4± 0.5 for the one-stepmethod

Figure 8.Example case of a carotid spectral photon-counting CT angiography in a 68-years-oldmanusingVMIs at 40 keV and 70 keV
and iodine images. The one-step spectral images enable a better depiction of a severe carotid stenosis associatedwith a calcified plaque
in comparison to the two-step images (zoomed areas).

Figure 9.Detailed image quality and diagnostic scores for the iodine images andVMIs for the two-stepmethod (left) and one-step
(right)methods.
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(averaged over all VMIs). This indicates that theVMIs are above the acceptable threshold even if the iodine
image is not.

Similar observations of the noise scores weremade for the iodine imagewith amean score of 1.7± 0.5 (two-
step) and 3.7± 0.5 (one-step) compared to ameanVMI score of 2.9± 0.2 (two-step) and 4.0± 0.0 (one-step).
For the sharpness score, the levels in the iodine imagewere 1.7± 0.5 (two-step) and 4.2± 0.9 (one-step) and,
averaged over all VMIs, 3.2± 0.4 (two-step) and 4.0± 0.0 (one-step).

The percentages of patients with a score improvement are displayed in table 3. The one-stepmethod has
improved the image quality criteria in all images. This led to an improvement of diagnostic task scores inmost
cases except at lowerVMI energies (40, 50 and 60 keV)were the two-stepmethod provided acceptable to good
scores for one patient.

4.Discussion

The evaluation of phantomdata has shown that the one-stepmethod can improve image quality compared to
the selected two-stepmethod evenwith the same spatial regularizer. The one-step algorithm can either provide a
better spatial resolution at the same noise level or a lower noise level at the same spatial resolution in thematerial
decomposed images. TheNPS curves in section 3.3 illustrate that the one-stepmethod preserves the high spatial
frequencies for the same noise level. However, the one-step algorithm requires a longer computation time.

Indeed, the selected two-step algorithmoperates theMDon a pixel-by-pixel basis which is very efficient
regarding computation time.More sophisticatedmethods could have been used, e.g. with a regularization term
on the sinograms or using a joint reconstruction of the decomposed basismaterial sinograms. This would have
increased the computation time and/or the number of parameters to tune and the focus of this workwas the
comparisonwith a two-step reconstruction algorithmwith a similar spatial regularization term.One limitation
of this comparison lies in the absence of a dedicated evaluation of ring artifacts, whichmight differ between the
two-step and one-step strategies. In this study, a post-processing ring artifact correctionwas applied to both
approaches. However, further ring corrections could be investigated butwould be specific to eachmethod. For
example, the one-step scheme could be improvedwith themodification of the spectralmodel (equation (2)) to
correct for ring artifacts during the reconstruction process (Schmidt et al 2017). Figure 3 illustrates how a one-
step scheme has the ability to reduce noise while preserving spatial resolution.On clinical spectral CTs, the
selected two-step scheme is coupledwith image post-processing to improve image quality which could also be
applied to one-step images.

Because the computation time of the one-step implementationwas not optimized, we do not provide the
computation time of the two techniques but the one-step algorithm is significantlymore computationally
demanding than the two-step algorithm. A limitation of the current work is that the implemented two-step
algorithm is different from the clinical two-step algorithm. Indeed, the reconstruction algorithm is amodel-
based techniquewhich, to our knowledge, is not currently employed in clinical scanners. Another limitation is
the difference in noise texture compared to FBP images. This wouldmodify theNPS curves presented infigure 7.
FBP images are also characterized by streak artifacts whereasmodel-based reconstructions will present patchy
imageswith strong spatial regularization.

For theone-stepmethod, thequantitativemeasurements of the phantom images have demonstrated how the
regularization level applied to amaterialmap can impact the other basismaterialmap.The choice of regularization
parameters ismore complicated to avoid this cross-talk effect betweenmaterialmaps and it can impact both spatial
resolution at an edge between twomaterials and the spectral separationbetween the twomaterial densitymaps.
The cross-talk impact couldbe further studiedwith other iodine concentrations. The clinical analysiswas not
madeon the reconstructedwater volume.However, the latter has an impact on the reconstructedVMIs. This
impact is different for the two-stepor theone-stepmethod.Thepre-reconstructionMDtwo-stepmethods
provide an anti-correlated noise between thewater and iodinemaps (Persson andGrönberg 2017).

Table 3.Percentages of patient with a score improvement with the one-stepmethod compared to the two-step
method.N/A:NonAvailable, only the vessel lumen clinical taskwas evaluated in iodinemaps.

Criterion 40 keV 50 keV 60 keV 70 keV 80 keV Iodine

Image quality—Overall 100% 100% 100% 100% 100% 100%

Image quality—Noise 100% 100% 100% 100% 100% 100%

Image quality—Sharpness 100% 100% 100% 100% 100% 100%

Diagnostic—Vessel lumen 75% 75% 75% 100% 100% 100%

Diagnostic—Calcified plaque 100% 100% 100% 100% 100% N/A

Diagnostic—Non-calcified plaque 75% 75% 75% 75% 75% N/A
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Indeed, for the regularizationparameters applied to thepatient data, the Pearson correlation coefficientswere
-0.91 and -0.13 for the two-step and the one-stepmethods, respectively. The two-stepmaps have a stronger
covariancewith anti-correlatednoise and thesenoise propertieswill have different impact depending on theVMI
computation (Leng et al2015) (seefigure 4). This complicates the comparisonof the two techniques onVMIs as
regularization parameters that lead to similar properties inmaterialmapswould lead to differentVMInoise
properties. Thismeans that there is not an optimal set of parameters leading to a fair comparisonofVMIs at all
energies for the two techniques. The choice has beenmade in this study to focus on the iodinemap comparison
(seefigure 3), as thismap is a direct result of theMDproblem.

The phantomdatawere acquired at a conventional dose for clinical CT. The quantitative results could vary
and the difference between the one-step and the two-stepmethodsmay be even larger at lower dose or at a
smaller iodine concentration in theCTA insert. The scannerwas operatedwith a 2× 2 binning, which provides
a slightly smaller detector pixel size at the isocenter (0.55 mm) compared to average commercial DE-CTs
(0.6–0.75 mm). The results of this study indicate that the one-step algorithm could reconstruct spectral images
at the full PCD-CT spatial resolution and low-dose.NewCTAprotocols are also investigatedwith the injection
of K-edge contrast agents (Si-Mohamed et al 2021). This would require a three-material basisMDwith a
potential noise increase whichmight be bettermitigatedwith the one-stepmethod thanwith the two-step
method.

The clinical purpose of CTAprotocols is the depiction of the calcified plaques around the carotid artery (see
supplemental figure I). This protocol benefits from an increased spatial resolution and the patient data were
acquiredwith a low-dose protocol. In this context, the one-step algorithmpresented a good overall image
quality score in the iodinemaps. This shows that the one-stepmethod can enable spectral reconstruction at a
low irradiation dose. TheVMIs reconstructedwith the selected two-stepmethod take advantage of the
correlated noise in the iodine andwatermaps and present at some energy an acceptable image quality. TheVMIs
computedwith the one-stepmethod still had higher image quality and diagnostic scores.

The phantomused in this workwas specifically designed to reproduce theCTAdiagnostic task. The impact
of the regularization parameters would be different for a different task.Moreover, the basismaterials choice
(iodine andwater) depends on the clinical task andwould be different. For example, a calcium andwater basis
would be selected in the absence of a contrast agent injection or the photo-electric and compton energy
functions to evaluate the atomic number. Nevertheless, the image qualitymetricsmeasured on the phantom
acquisitions presented a correlationwith the scores evaluated by an experienced radiologist. This correlation
could be extended from the evaluatedNPS andTTF properties to other clinical tasks. A detectability index
associated to amodel observer could be computed (Solomon et al 2015, Rotzinger et al 2021) to further
investigate the correlation between thesemetrics and the radiologist scores in a study includingmore patients
and several radiologists. The presented phantommethodology is relevant to compare spectral imaging
algorithms and set the regularizationweights of the iterative reconstructionmethods to, eventually, improve
image quality in patient studies.

5. Conclusions

The presented one-stepmethod improved image quality compared to a reference two-step algorithm. The noise
and spatial resolution improvements weremeasured on phantomdata designed for theCTA clinical task. This
translated into higher image quality and diagnostic scores evaluated by a radiologist on patient images. This
demonstrates that the one-stepmethod can be used at low doses to reconstruct spectral CT images with a high
spatial resolutionwhilemaintaining a lownoise level.
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