





### POTENTIAL FOR CORONARY K-EDGE IMAGING WITH SPECTRAL PHOTON-COUNTING CT

### **INITIAL EXPERIENCE**

Presenter: S. Si-Mohamed, MD, PhD student

S. Si-Mohamed<sup>(1,2)</sup>, L. Perrier<sup>(2)</sup>, M. Sigovan<sup>(1)</sup>, D. Bar-Ness<sup>(1)</sup>, P. Coulon<sup>(3)</sup>, G. Finet<sup>(2)</sup>, L. Boussel<sup>(1,2)</sup>, P. Douek<sup>(1,2)</sup>

- <sup>(1)</sup> Laboratoire CREATIS-UMR-INSERM-Université Lyon
- <sup>(2)</sup> Hospices civils de Lyon
- <sup>(3)</sup> Philips, France





## BACKGROUND

- Calcifications related blooming artifacts and beam hardening impair diagnosis of lumen stenosis
- Limited spatial resolution of standard CT<sup>(1)</sup>

=> Limited performance for evaluation of calcified coronary arteries <sup>(1)</sup>





<sup>(1)</sup> Rossi A et al. J Cardiovasc Comput Tomogr. 2017





**Objectif:** To assess the potential of a preclinical Spectral Photon Counting CT scanner to improve vascular imaging in the presence of calcifications using a K-edge method imaging



## INTRODUCTION

- Spectral photon-counting computed tomography (SPCCT) technology
  - New and promising imaging modality
  - Development of energy resolving detectors called photon-counting detectors <sup>(1)</sup>
    - K-edge imaging
  - Improved intrinsic spatial resolution <sup>(1)</sup>



<sup>(1)</sup> Si-mohamed et al. NIMAA. 2017



# INTRODUCTION

□ "K-edge imaging"<sup>(1)</sup> Candidate: GADOLINIUM **K-edge material Non-K-edge material** Attenuation **K-edge absorption** Energy

Advantages :

Material specific K-edge imaging





# INTRODUCTION

– Feurlein et al. Radiology. 2008



late (*PMMA*) phantom with simulated plaque in stent.





# MATERIAL/METHODS

- Spectral photon-counting CT system
  - 5 bins photon-counting detectors set as 30, 51, 64, 72, 85 keV
  - Modified clinical base-Conventional X ray tube
  - Field of vue of 160 mm-Gantry rotation time of 1 second
  - Spatial resolution: 250 μm
  - Parameters used:
    - Tube current of 100 mAs
    - Tube voltage of 120 kVp



Philips Spectral Photon Counting CT pre-clinical prototype UCBL, CERMEP, Lyon, France



## MATERIALS AND METHODS

#### EX VIVO HUMAN HEARTS

- Remodeling with wax in the cavities
- Proximan catheter of coronaries
- E Contrast agents
  - macrocyclic gadolinium based
    contrast agent (Prohance, Bracco)
  - = Concentration targeted for 400 UH
    - 1/7 dilution

#### SPCCT reconstructions

- Conventional HU map and Gadolinium K-edge map
- = Filter Gaussian 2 pixels on gadolinium map

#### Image analysis

- 30 points read by two observers on a curvilinear reconstruction of the vessel on the conventional and gadolinium maps
- Statistical analysis
  - Comparison of the measures by a paired t-test
  - Inter and intra-observers concordance evaluated by a Kappa-test



### RESULTS





### RESULTS













| Sections of coronary arteries | HU                     | K-edge        |
|-------------------------------|------------------------|---------------|
|                               | Measured diameter (cm) |               |
| Calcified area                | 2.0±0.1 cm             | 2.2 ± 0.1 cm* |
| Non calcified area            | $4.2 \pm 0.6$          | 4.2 ± 0.6 ns  |

| Sections of coronary<br>arteries | HU                | K-edge |
|----------------------------------|-------------------|--------|
|                                  | Coefficient Kappa |        |
| Concordance intra-obs            | 0.92              | 0.85   |
| Concordance inter-obs            | 0.85              | 0.75   |

\* - p < 0.05

<u>Test Kappa:</u> nul (k = 0.00–0.20), faible (k = 0.00–0.20), moderate (k = 0.41–0.60), good (k = 0.61–0.80), or excellent (k = 0.81-1.00)



### DISCUSSION

- Specific visualization of the gadolinium in the coronary arteries lumen
- Lumen diameter significantly higher with K-edge imaging than with conventional images in case of calcified coronary arteries

### $\Rightarrow$ Better depiction of lumen diameter quantification





- No evaluation of the grant truth lumen diameter
- High concentration of gadolinium needed



## **CONCLUSION**

- Potential of gadolinium K-edge coronary imaging
- Novel contrast agent gadolinium based





RSNA 2017-McCormick Place, Chicago

### THANK YOU FOR YOUR ATTENTION

University **'im**agerie dvanced rasmus Ul

ST DESCRIPTION OF

on1 Claude Bernard, Creatis Laboratory, CNRS UMR 5220, INSERM U1206 | Hospices Civils de Lyon, CERMEP, Centre vivant | Philips, CT Clinical Science, Suresnes, France | Philips Research Laboratories, Hamburg, Germany | Philips, Global hnologies, CT, Haifa, Israel | BRACCO Imaging S.P.A | King's College, London | VOXCAN | Universita degli Studi di Torino | versity, Rotterdam | Cliniques Universitaires | Saint-Luc, Bruxelles | Lyon Ingenierie Projet | University of Pennsylvania | chnical University of Munich

Funding from the European Union's Horizon 2020 No 643694.

# THANK YOU FOR YOUR ATTENTION