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Purpose: The purpose of this study was to compare the performance of Precise IQ Engine (PIQE) and
Advanced intelligent Clear-IQ Engine (AiCE) algorithms on image-quality according to the dose level in a car-
diac computed tomography (CT) protocol.
Materials and methods: Acquisitions were performed using the CT ACR 464 phantom at three dose levels (vol-
ume CT dose indexes: 7.1/5.2/3.1 mGy) using a prospective cardiac CT protocol. Raw data were reconstructed
using the three levels of AiCE and PIQE (Mild, Standard and Strong). The noise power spectrum (NPS) and
task-based transfer function (TTF) for bone and acrylic inserts were computed. The detectability index (d’)
was computed to model the detectability of the coronary lumen (350 Hounsfield units and 4-mm diameter)
and non-calcified plaque (40 Hounsfield units and 2-mm diameter).
Results: Noise magnitude values were lower with PIQE than with AiCE (�13.4 § 6.0 [standard deviation (SD)] %
for Mild, -20.4 § 4.0 [SD] % for Standard and -32.6 § 2.6 [SD] % for Strong levels). The average NPS spatial fre-
quencies shifted towards higher frequencies with PIQE than with AiCE (21.9 § 3.5 [SD] % for Mild, 20.1 § 3.0
[SD] % for Standard and 12.5 § 3.5 [SD] % for Strong levels). The TTF values at fifty percent (f50) values shifted
towards higher frequencies with PIQE than with AiCE for acrylic inserts but, for bone inserts, f50 values were
found to be close. Whatever the dose and DLR level, d’ values of both simulated cardiac lesions were higher
with PIQE than with AiCE. For the simulated coronary lumen, d’ values were better by 35.1§ 9.3 (SD) % on aver-
age for all dose levels for Mild, 43.2§ 5.0 (SD) % for Standard, and 62.6§ 1.2 (SD) % for Strong levels.
Conclusion: Compared to AiCE, PIQE reduced noise, improved spatial resolution, noise texture and detectability
of simulated cardiac lesions. PIQE seems to have a greater potential for dose reduction in cardiac CT acquisition.
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1. Introduction

In recent years, with the emergence of artificial intelligence in
medicine, algorithms for the reconstruction of computed tomography
(CT) images based on deep learning (DLR) have been developed [1].
These algorithms feature a deep neural network (DNN) [2,3] or a con-
volutional neural network (CNN) [4−6] to differentiate the signal
from the noise and thus reduce the noise in the image without alter-
ing its texture. These new algorithms are used in clinical routine and
can provide better image quality for the same dose level or even a
lower dose, whilst maintaining a diagnostic image quality similar to
that of iterative reconstruction algorithms [2,3,5-17].

A new DLR algorithm (Advanced intelligent Clear-IQ Engine
[AiCE]) that features a DNN trained with high-quality model-based
iterative reconstruction patient datasets has been recently devel-
oped [7,18]. A second version of this algorithm was later developed.
Since the first version, new reconstruction kernels and slice thick-
nesses have become available [7]. In addition, its DNN has been
trained with a larger patient database, resulting in reduced noise
and better spatial resolution and detectability without changing the
noise texture [7].
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In cardiac imaging, high-resolution imaging is of great interest for
detecting lesions such as calcified or non-calcified coronary plaques
[19−22]. Such imaging protocols require acquisitions with low nomi-
nal slice thicknesses thus increasing image noise, which can be tack-
led either by an increase in the X-ray dose or with image
reconstruction. AiCE, reduces noise, which is especially abundant in
low radiation dose images, improves signal-to-noise ratio, and main-
tains noise texture, which is a limitation of iterative reconstruction
[1]. The Precise IQ Engine (PIQE) is a new specially trained super-res-
olution DLR (SR-DLR) algorithm, dedicated to cardiac image recon-
struction. The neural network of PIQE features a three-dimensional
deep CNN trained using cardiac image data acquired on the commer-
cially available ultra-high resolution CT scanner (Aquilion Precision),
which in clinical practice uses 0.25 mm detector elements. The raw
data coming from this CT system and used to train the neural net-
work are reconstructed with AiCE. This new SR-DLR algorithm is cur-
rently available only for cardiac cases, on the wide-area detector
Aquilion ONE / PRISM Edition CT system [23]. On this CT system, PIQE
can be used with two reconstructed image thicknesses of 0.5 and
1 mm combining volume acquisitions.

Recent attempts of high-resolution imaging with spiral CT are
encountering difficulties such as radiation exposure and scan heart
rate variability [24,25]. Several studies have highlighted AiCE’s con-
tribution to improving the quality of cardiac CT images compared to
the iterative reconstruction algorithm Adaptive Iterative Dose Reduc-
tion (AIDR 3D) [10,16,26]. These studies showed that, compared to
AIDR 3D, at the same dose level, AiCE improves the image quality of
coronary CT angiography images and reduces the image noise
[10,16,26]. Another study has shown that AiCE improves the quality
of coronary CT angiography images with a dose reduction of about
40 % compared to AIDR 3D [14]. One clinical study showing the supe-
riority of PIQE over an iterative algorithm for coronary CT angiogra-
phy has been published [27]. Two phantom studies have also
compared PIQE with AiCE and two other iterative reconstruction
algorithms using task-based image quality assessment [28,29]. In the
first study, acquisition and reconstruction parameters different from
those used for routine clinical cardiac CT were used [29]. In addition,
the detectability index was calculated on the iodine insert and not on
simulated lesions with clinical features. In the second study, only one
of the 3 levels (the level Standard) available for AiCE and PIQE were
assessed [28].

The purpose of this study was to assess the impact of the new SR-
DLR algorithm, PIQE on the quality of cardiac CT images compared
with the DLR algorithm AiCE using all the levels available for these
two algorithms and dose levels used in clinical routine.
Fig. 1. Photographs of the phantoms used in the study. A: Figure shows region of interest (R
bone inserts. B: Figure shows ROIs in red used for the noise power spectrum (NPS) assessmen
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2. Materials and methods

2.1. Acquisitions and reconstruction parameters

An anthropomorphic phantom (CT Torso CTU-41; Kyoto Kagaku)
and a 20 cm diameter image quality phantom (CT ACR 464; Sun
Nuclear) phantom were scanned on an Aquilion ONE / PRISM Edition
CT system (Canon Medical Systems Corporation, Otawara, Japan)
equipped with the AiCE DLR algorithm and the new cardiac SR-DLR
algorithm, PIQE.

Acquisitions were performed on a single-rotation cardiac cover-
age of 16 cm in axial mode (physical beam collimation of 320 £
0.5 mm2) using the prospective CT cardiac protocol. For each acquisi-
tion, a heart rate of 60 beats/min was simulated and the acquisition
was performed on a single cardiac cycle (75 % of the RR interval).
Classical acquisition cardiac CT parameters were used including a
tube voltage of 100 kVp, a rotation time of 0.275 s/rotation and a
field-of-view of 220.7 mm. The tube current modulation system was
disabled and the tube current (mA) was set to obtain CT volume dose
indexes (CTDIvol) close to 7.1, 5.2 and 3.1 mGy (900, 650 and 400 mA,
respectively). The first dose level corresponds to the dose level usu-
ally used in clinical routine, and the other two levels have been used
to assess the impact of dose reduction on image quality with these
two DLR algorithms. For each dose level, five acquisitions were per-
formed on the image quality phantom and only one acquisition for
the anthropomorphic phantom.

Raw data were reconstructed using the three levels of AiCE and
PIQE (Mild/Standard/Strong), the “Cardiac” reconstruction kernel, a
matrix of 512 £ 512 pixels, a slice thickness close to 0.5 mm
(0.25 mm increments) and a 220 mm field-of-view.

2.2. Task-based image quality assessement

A task-based image quality assessment was performed using the
iQMetrix-CT software developed by a working group from the French
Society of Medical Physicists [30].

2.2.1. Task-based transfer function
The task-based transfer function (TTF) was used to assess the spa-

tial resolution under conditions of contrast and noise, close to the
lesions encountered in clinical practice. It was calculated on acrylic
and bone inserts of the image quality phantom (Fig. 1.A) using the
circular edge technique [31,32]. To minimize the image-noise effect
on the edge spread function, the TTF was computed from 200 conse-
cutive axial slices (40 slices for each of the five acquisitions).
OIs) in red used to compute the task-based transfer function (TTF) with the acrylic and
t. C: Figure shows sagittal view of the heart of the anthropomorphic phantom.
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2.2.2. Noise power spectrum
The noise power spectrum (NPS) is used to evaluate noise texture

and noise magnitude in the frequency domain. It was computed on
the same number of slices as defined for the TTF by placing four
square regions of interest (ROIs) of 128 £ 128 pixels in the homoge-
neous module of the image quality phantom (Fig. 1.B) as follows (1):

NPS2D fx; fy
� � ¼ DxDy

LxLy

1
NROI

XNROI

i¼1

jFFT2D ROIi x; yð Þ � FITi x; yð Þf gj2 ð1Þ

where Dx and Dy are the pixel size in the x- and y-directions, respec-
tively; FFT is the fast Fourier transform; Lx and Ly are the lengths of
the ROIs in the x- and y-directions; NROI is the number of ROIs; ROIiðx;
yÞ is the mean pixel value measured for a ROI in its position (x,y) and
FITiðx; yÞ is a 2nd order polynomial fit of ROIiðx; yÞ.

To quantify the changes in noise magnitude and noise texture of
the image, the square root of the area under the NPS curve and the
weighted average spatial frequency (fav, mm�1) of the NPS1D curve
were measured [32].

2.2.3. Detectability index
A non-prewhitening observer model with an eye filter (NPWE)

was used to calculate the detectability index (d’NPWE):

d
02
NPWE ¼

RR jW u; vð Þj2:TTF u; vð Þ2:E u; vð Þ2dudv
h i2

RR jW u; vð Þj2:TTF u; vð Þ2:NPS u; vð Þ:E u; vð Þ4dudv
ð2Þ

where u and v are the spatial frequencies in the x- and y-directions, E
the eye filter that models the human visual system sensitivity to dif-
ferent spatial frequencies [33−35], and W(u,v) the task function
defined as:

W ¼ jF h1 x; yð Þ � h2 x; yð Þf gj ð3Þ
where F is the Fourier transform and h1ðx; yÞ and h2ðx; yÞ correspond to
the object present and the object absent hypotheses, respectively [32].

The eye filter was modeled according to the human visual
response function [35] using a zoom factor of 1.5 and a 500 mm view-
ing distance.

Two task functions were defined: one with a diameter of 2 mm
and a contrast of 40 Hounsfield units (HU) to simulate the non-calci-
fied plaque and the second with a diameter of 4 mm and a contrast of
350 HU to simulate the coronary lumen [22]. TTF results from the
acrylic insert were used for the detection task of the non-calcified
plaque whereas the results of the bone insert were used for the coro-
nary lumen.

2.3. Subjective image quality assessment

Axial cardiac images of the anthropomorphic phantom obtained
for both the DLR and SR-DLR algorithms and all dose levels were
scored in consensus by two radiologists (S. S.-M. and M.P., with 13
and six years of experience, respectively) using the previously
Table 1
Noise magnitude and average noise power spectrum (NP
els and the three levels of AiCE and PIQE algorithms.

Variable CTDIvol (mGy

Mild Sta

Noise magnitude (HU) 3.1 19.3 17
5.2 16.8 15
7.1 15.2 13

fav (mm�1) 3.1 0.30 0.2
5.2 0.31 0.2
7.1 0.31 0.3

AiCE: Advanced intelligent Clear-IQ Engine; CTDIvol: volu

3

published methodology (Fig. 1.C) [2,8]. Readers were blinded to the
dose level and reconstruction type (algorithm and levels). They were
instructed to subjectively assess image noise, image smoothing,
image sharpness and the contrast between vessels and fat in the
mediastinum using a commonly used five-point scale in which
1 = unacceptable, 2 = suboptimal, 3 = acceptable, 4 = above average,
and 5 = excellent. The overall image quality was scored using a four-
point scale: 1 = not evaluable, 2 = interpretable despite moderate arti-
facts or noise, 3 = fully interpretable with mild artifacts or noise,
4 = no artifacts or noise [2,8]. A value < 3 was considered unsatisfac-
tory for clinical use.
2.4. Statistical analysis

The normality of the distribution of quantitative variables was test
using Shapiro-Wilk test [36]. Quantitative variables were expressed
as means § standard deviations (SD) and ranges when normally dis-
tributed.
3. Results

3.1. Noise power spectrum
3.1.1. Noise magnitude
For both DLR and SR-DLR algorithms, noise magnitude decreased

as the dose level increased and from the Mild level to Strong level
(Table 1 and Fig. 2). For AiCE, noise magnitude decreased for all dose
levels by �9.8 % § 1.2 (SD) % from Mild to Standard and �10.5 % §
1.5 (SD) % from Standard to Strong on average. For PIQE, noise magni-
tude decreased by �16.6 % § 9.4 (SD) % and �24.2 % § 4.3 (SD) % on
average, respectively.

For all dose levels and each DLR level, noise magnitude values
were lower with PIQE than with AiCE. The noise magnitude differen-
ces between PIQE and AiCE increased as the DLR level increased (on
average by �13.4 § 6.0 [SD] % for Mild, �20.4 § 4.0 [SD] % for Stan-
dard and �32.6 § 2.6 [SD] % for Strong).
3.1.2. Noise texture
For each algorithm and each DLR level, similar fav values were

found according to dose level (Table 1 and Fig. 2). For AiCE, fav values
shifted towards lower frequencies from Mild (0.31 § 0.01 [SD]
mm�1) to Strong (0.27 § 0.01 [SD] mm�1) levels. The same pattern
was found for PIQE: 0.37 § 0.01 [SD] mm�1 and 0.31 § 0.02 [SD]
mm�1, respectively.

For all dose levels and each DLR level, fav values were greater with
PIQE than with AiCE. The differences in fav values between PIQE and
AiCE decreased as the DLR level increased (by 21.9 § 3.5 [SD] % for
Mild, 20.1 § 3.0 [SD] % for Standard and 12.5 § 3.5 [SD] % for Strong,
on average).
S) spatial frequencies (fav) obtained for all dose lev-

AiCE PIQE

ndard Strong Mild Standard Strong

.2 15.1 17.9 13.0 9.8

.1 13.5 14.3 12.7 9.1

.9 12.6 12.3 11.0 8.8
8 0.27 0.38 0.33 0.29
9 0.28 0.37 0.36 0.31
0 0.28 0.37 0.36 0.32

me CT dose index; PIQE: Precise IQ Engine.



Fig. 2. Graph show noise power spectrum (NPS) curves obtained for all levels of AiCE and PIQE and the three dose levels.
Noted that the iQMetrix-CT software only guarantees NPS data calculated up to Nyquist frequency.
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3.2. Task-based transfer function

For both inserts, TTF curves are depicted in Fig. 3 and values for
TTF at fifty percent (f50) are shown in Table 2.

For the acrylic insert and for each DLR algorithm (Fig. 3.A), similar
f50 values were found for all dose and DLR levels (0.30 § 0.02 [SD]
mm�1 for AiCE and 0.40 § 0.01 [SD] mm�1 for PIQE). For each DLR
level, f50 values shifted toward higher frequencies with PIQE com-
pared to AiCE (on average by 31.0 § 4.1 [SD] % for Mild, 32.5 § 1.3
[SD] % for Standard and 33.7 § 2.7 [SD] % for Strong levels).
Fig. 3. Graph show task-based transfer function (TTF) curves obtained for all levels of AiCE an
Noted that the iQMetrix-CT software only guarantees TTF data calculated up to Nyquist frequ

4

For the bone insert and both algorithms (Fig. 3.B), f50 values
decreased as the dose increased, especially from 3.1 to 5.2 mGy. For
AiCE, f50 values increased from Mild to Standard (4.9 § 1.0 [SD] %)
and from Standard to Strong (4.3 § 0.9 [SD] %) levels. For PIQE and
each dose level, similar f50 values were found for all DLR levels
(0.5 § 2.0 [SD] % from Mild to Standard and �0.8 § 1.0 [SD] % from
Standard to Strong). f50 values shifted toward higher frequencies
with PIQE than with AiCE for Mild (8.3 § 1.5 [SD] %) and Standard
(3.7 § 1.5 [SD] %) levels. For Strong level, similar f50 values were
found with AiCE and PIQE algorithms (�1.3 § 0.1 [SD] %).
d PIQE and the three dose levels for acrylic (A) and bone (B) inserts.
ency.



Table 2
Task-based transfer function values at fifty percent (f50) of the acrylic and bone inserts obtained for all dose
levels and the three levels of AiCE and PIQE algorithms.

Variable CTDIvol (mGy) AiCE PIQE

Mild Standard Strong Mild Standard Strong

f50 (mm�1) bone insert 3.1 0.51 0.53 0.54 0.55 0.54 0.52
5.2 0.40 0.42 0.45 0.44 0.45 0.44
7.1 0.39 0.41 0.43 0.42 0.43 0.43

f50 (mm�1) acrylic insert 3.1 0.32 0.32 0.32 0.41 0.42 0.42
5.2 0.29 0.29 0.29 0.38 0.39 0.39
7.1 0.29 0.29 0.29 0.38 0.39 0.40

AiCE: Advanced intelligent Clear-IQ Engine; CTDIvol: volume CT dose index; PIQE: Precise IQ Engine.
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3.3. Detectability index

Fig. 4 depicts the d’NPWE values obtained for all dose levels and
both DLR algorithms. For the two simulated cardiac lesions, d’NPWE

increased as the dose increased and from Mild to Strong levels.
d’NPWE values were higher for coronary lumen (Fig. 4.A) than for non-
calcified plaque (Fig. 4.B).

For both simulated lesions, d’NPWE values were higher with PIQE
than AiCE for the same DLR level. For the coronary lumen, d’ values
increased by 35.1 § 9.3 (SD) % for Mild, 43.2 § 5.0 (SD) % for Standard
and 62.6 § 1.2 (SD) % for Strong levels on average. For the non-calci-
fied plaque, d’NPWE values increased by 60.3 § 10.3 (SD) % for Mild,
Fig. 4. Graph show detectability index (d0) values of the coronary lumen (A. 4 mm in diame
obtained for all levels of AiCE and PIQE and the three dose levels.

Fig. 5. Figure show axial anthropomorphic CT images (WL: 400 HU, WW: 4

5

70.7 § 5.3 (SD) % for Standard and 93.4 § 2.5 (SD) % for Strong levels,
on average.

3.4. Subjective image quality

Fig. 5 shows the image quality obtained with the anthropomor-
phic phantom and Table 3 shows the results of subjective image qual-
ity assessed by the two radiologists.

For both DLR algorithms, the scores of image noise, image sharp-
ness and contrast between vessels and fat increased as the dose
increased and from Mild to Strong levels. For the image smoothing,
the score tended to decrease from Mild level at 3.1 mGy to Strong
ter, 350 HU contrast), and non-calcified plaque (B. 2 mm in diameter, 40 HU contrast)

0 HU) obtained for all levels of AiCE and PIQE and the three dose levels.



Table 3
Results of subjective image quality.

Variable CTDIvol (mGy) AiCE PIQE

Mild STD STR Mild STD STR

Image noise
(scores 1−5)

3.1 2.5 3.0 3.5 3.5 4.0 4.5
5.2 3.0 3.5 4.0 4.0 4.5 4.5
7.1 4.0 4.5 5.0 4.5 4.5 5.0

Image smoothing
(scores 1−5)

3.1 3.5 3.5 3.0 3.5 3.5 3.0
5.2 3.5 3.5 3.5 4.0 4.0 3.5
7.1 4.0 3.5 3.5 4.5 4.0 4.0

Image sharpness
(scores 1−5)

3.1 2.5 3.5 4.0 3.5 4.0 4.5
5.2 3.0 3.5 4.0 4.5 4.5 4.5
7.1 4.0 4.0 4.5 4.5 5.0 5.0

Contrast between
vessels and fat in
the mediastinum
(scores 1−5)

3.1 2.5 3.5 3.5 4.0 4.0 4.5
5.2 3.0 3.5 3.5 4.0 4.5 5.0
7.1 3.5 4.0 4.5 4.5 5.0 5.0

Overall image qual-
ity (scores 1−4)

3.1 2.0 2.5 3.0 3.0 3.5 3.5
5.2 2.5 3.0 3.0 4.0 3.5 4.0
7.1 3.0 3.5 4.0 4.0 4.0 4.0

Bold indicates values < 3, which were considered unsatisfactory for clinical use.
AiCE: Advanced intelligent Clear-IQ Engine; CTDIvol: volume CT dose index; PIQE:
Precise IQ Engine.
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level at 7.1 mGy. For the same DLR level, the scores for image noise,
image sharpness, image smoothing and contrast were higher or simi-
lar with PIQE than with AiCE.

For the same dose level and the same DLR level, the overall image
quality score were higher or similar with PIQE compared to AiCE. For
PIQE, radiologists rated the overall image quality ≥ 3 for all dose lev-
els and all DLR levels. For AiCE, the overall image quality was ≥ 3,
except at 3.1 and 5.2 mGy with Mild level and at 3.1 mGy with Stan-
dard level.

4. Discussion

In the present study, the new PIQE cardiac SR-DLR algorithm’s
contribution to improving the quality of cardiac CT images was
assessed. To this aim, a task-based image quality assessment and sub-
jective image quality assessment were performed and the results
obtained with PIQE were compared with those of the AiCE DLR algo-
rithm used so far. Compared to AiCE, the noise magnitude was
reduced and the spatial resolution and the noise texture were
improved with PIQE at all dose levels. Radiologists confirmed these
results in their subjective image quality assessment of cardiac images
of the anthropomorphic phantom. Greater detectability was found
with PIQE than with AiCE for the two simulated cardiac lesions.

The NPS outcomes confirmed that for AiCE algorithm, noise mag-
nitude decreased as the dose level increased and from Mild to Stan-
dard levels [18,29]. The same pattern was found for PIQE algorithm.
For the same dose level and DLR level, noise magnitude was lower
with PIQE than with AiCE [28,29]. Regarding the noise texture out-
comes, fav values shifted toward lower spatial frequencies from Mild
to Strong levels for both algorithms. For each dose and DLR level, fav
values were shifted toward higher spatial frequencies with PIQE than
with AiCE indicating that the image texture was less changed notably
the image smoothing was less important. Similar noise magnitude
and noise texture outcomes according to the dose and DLR levels
were found in another study [29]. The radiologists confirmed the
noise magnitude and noise texture outcomes on the subjective
assessment of the cardiac images of the anthropomorphic phantom.
The scores for noise magnitude and noise texture were considered
satisfactory for clinical use for almost all dose levels and all DLR levels
of both algorithms, except for AiCE Mild at 3.1 mGy. The noise reduc-
tion and noise texture improvement obtained with PIQE compared to
AiCE might be related to the fact that the PIQE’s CNN was trained
with high resolution images reconstructed with AiCE whereas AiCE’s
6

DNN was trained with high quality images reconstructed with the
FIRST MBIR algorithm. However, one study showed that compared to
FIRST and AIDR 3D algorithms, AiCE had lower noise magnitude val-
ues and higher or similar fav values depending on the DLR level [18].

The TTF results showed that for both inserts studied, the f50 values
representing spatial resolution, varied depending on the insert and
algorithm used. For the low contrast acrylic insert, f50 values were not
influenced by the dose level and the DLR level for either of the two
algorithms. Similar outcomes were found with the iodine insert in
another image quality phantom [29]. For the high contrast bone insert,
the f50 values decreased between CTDIvol values of 3.1 to 5.2 mGy for
all DLR levels of both algorithms and according to the DLR level only
for AiCE. For AiCE, the f50 values were lower for the acrylic insert than
for the bone insert. For PIQE, the same pattern was observed but with
less difference between f50 values. With this behavior, the f50 values
were higher with PIQE than with AiCE for the acrylic insert whereas
the values were close for the bone insert. These results might be
explained by the non-linear properties (spatial resolution is depen-
dent on noise and contrast) of the FIRST algorithm used to train the
AiCE’s DNN. One study showed that with a soft tissue kernel, when
AiCE was used to train the PIQE’s CNN, it also exhibited non-linear
properties but the spatial resolution was less impacted than the FIRST
algorithm by the contrast of the inserts [18]. In addition, radiologists
rated the image sharpness (contours of the aorta and heart) and con-
trast between the vessels and the mediastinum of the cardiac images
with higher scores for PIQE than for AICE. For these two criteria, all
images of both algorithms were rated satisfactory for clinical use. The
higher spatial resolution values of PIQE compared to AiCE may be
related to the fact that AiCE is a versatile DLR designed for various
medical imaging modalities, including cardiac CT. It aims to provide
high-quality images by reducing noise and enhancing image clarity
across different applications. On the other hand, PIQE is specifically
dedicated to cardiac imaging, focusing on optimizing the reconstruc-
tion process for cardiac CT scans. Also, AiCE is trained using high-qual-
ity images reconstructed with the FIRST MBIR algorithm. In contrast,
the CNN of PIQE is trained from ultra-high resolution cardiac datasets
acquired on a CT system with a 0.25 mm nominal slice thickness and
is specifically tailored for cardiac imaging.

The detectability index results confirmed that the d’ values
increased as the dose level and the lesion contrast increased but also
from Mild to Strong AiCE levels [18,29]. For both simulated cardiac
lesions and each DLR level, d’ values were higher with PIQE than
AiCE. These results were directly related with the NPS and TTF out-
comes where PIQE had lower image noise, a higher noise texture,
and higher or similar spatial resolution compared to AiCE. Similar
outcomes were found for the detectability of iodine insert [29] or
other inserts [28]. In addition, the d’ values obtained for all dose lev-
els and all DLR levels with PIQE were higher than the d’ values
obtained with the highest level of AiCE (Strong) and the highest dose
level (7.1 mGy), except for the level Mild of PIQE. This result opens
very interesting perspectives on the potential of PIQE for optimizing
the doses delivered to patients in cardiac CT protocols. Subjective
phantom-based assessment performed by the radiologists showed
that overall image quality was satisfactory for clinical use for all levels
of PIQE and all dose levels. Finally, based on the results obtained for
the d’ values of the two simulated lesions and the results of the sub-
jective analysis on anthropomorphic phantom, PIQE could be used in
clinical routine with a Standard or Strong level at any dose level,
including the lowest investigated, in this study, 3.1 mGy. This would
continue to address the challenge of obtaining high-resolution
images for cardiac imaging without increasing the patient radiation
dose, which has already been improved by the AICE algorithm. Our
outcomes must now be validated in a cohort of patients for routine
cardiac CT taking into account the patient’s heart rate, morphology
and the contrast of the coronary arteries injected with contrast
media.
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This study has its limitations. The comparison of both DLR algo-
rithms was performed with specific acquisition and reconstruction
parameters and other outcomes could have been obtained with other
parameters (dose level, slice thickness). This study was conducted on
phantoms that did not take into account the patient’s body morphol-
ogy. Both phantoms used were static, which may have led to an over-
estimation of detectability. Last, in addition to this preliminary
phantom study, an evaluation of these two reconstruction algorithms
by radiologists should be performed. This could include the evalua-
tion of specific cardiac anomalies and pathologies such as coronary
artery stenosis, myocardial infarction, cardiac masses (such as tumors
or thrombi), congenital cardiac anomalies, valvular diseases, and aor-
tic pathologies (such as aneurysms or dissections).

In conclusion, AiCE has already demonstrated its ability to
enhance image quality and achieve dose reduction in cardiac CT
imaging, while the results of this study showed that PIQE will con-
tinue to improve the quality of cardiac CT images by reducing noise
and improving image texture, spatial resolution and detectability of
lesions. Further patient studies must now be conducted to validate
and confirm these preliminary findings on phantoms and to assess
the clinical impact of both algorithms.
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