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Spectral photon-counting CT

Spectral computed tomography (CT) imaging encompasses a unique generation of CT systems based on a
simple principle that makes use of the energy-dependent information present in CT images. Over the past
two decades this principle has been expanded with the introduction of dual-energy CT systems. The first gen-
eration of spectral CT systems, represented either by dual-source or dual-layer technology, opened up a new
imaging approach in the radiology community with their ability to overcome the limitations of tissue charac-
terization encountered with conventional CT. Its expansion worldwide can also be considered as an impor-

tant leverage for the recent groundbreaking technology based on a new chain of detection available on

photon counting CT systems, which holds great promise for extending CT towards multi-energy CT imaging.

The purpose of this article was to detail the basic principles and techniques of spectral CT with a particular

emphasis on the newest technical developments of dual-energy and multi-energy CT systems.
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open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Spectral computed tomography (CT) imaging encompasses a
unique generation of CT systems based on a simple principle that
makes use of the energy-dependent information present in CT
images. Over the past two decades this principle has been expanded
with the introduction of dual-energy CT (DECT) systems. The first
generation of spectral CT systems, represented either by dual-source
or dual-layer technology, opened up a new imaging approach in the
radiology community with their ability to overcome the limitations
of tissue characterization encountered with conventional CT. Its
expansion worldwide can also be considered as an important lever-
age for the recent groundbreaking technology based on a new chain

Abbreviations: ASIC, Application-specific integrated circuit; CNR, Contrast-to-noise
ratio; CT, Computed tomography; DECT, Dual-energy CT; DSCT, Dual-source CT; FOV,
Field of view; HU, Hounsfield unit; MTF, Modulation transfer function; NPS, Noise
power spectrum; PCD, Photon-counting detectors; ROI, Region of interest; SNR, Signal-
to-noise ratio; SPCCT, Spectral photon-counting CT; TTF, Task-based transfer function;
VM, Virtual monochromatic image
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of detection available on photon counting CT systems, which holds
great promise for extending CT towards multi-energy CT imaging.

The purpose of this article was to detail the basic principles and
techniques of spectral CT with a particular emphasis on the newest
technical developments of DECT and multi-energy CT systems and
make the reader more familiar with this technology.

2. Principles and techniques of dual-energy and multi-energy CT
technology

2.1. Physical basis

CT imaging is based on measuring the linear absorption coeffi-
cients of different tissues an X-ray beam passes through. Each tissue
has its own linear absorption coefficient depending on its physical
density and atomic number as well as the energy of the beam [1-3].
During the interaction between X-rays and matter, the photons are
attenuated by biological media according to an exponential law
which is a factor of the photoelectric effect and Compton scattering.
In the human body, the X-ray beam passes through an infinite num-
ber of tissues with different densities for a given projection, making
it extremely difficult to understand the interaction between photons
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and matter. To identify the linear attenuation coefficient (u) of each
tissue the beam passes through, multiple projections are therefore
performed around an object or patient using helical CT systems. Dur-
ing the reconstruction process, each voxel is assigned to a Hounsfield
unit (HU) value based on the u of the tissue present in it, compared
to the w of the water, taken as a reference.

Using conventional CT, only one X-ray spectrum is used and the
attenuation measurement is integrated, consequently losing all the
energy dependence of a specific tissue. Unfortunately, for the same X-
ray beam’s energy, if the 14 of two tissues are similar (calcium and bone
for example), the same HU value will be assigned to both tissues and it
will be difficult to differentiate them. To overcome this limitation, a new
field in CT technology termed “spectral CT imaging” has been devel-
oped. The general idea is to take advantage of a tissue’s energy-depen-
dent data, by mainly measuring and differentiating between tissues
based on their weighting photoelectric effect and Compton scattering.

DECT is based on the acquisition or detection of two photon spec-
tra, one high energy and one low energy [4—9]. Alvarez and Macovski
[10] defined a formula to calculate the role of the photoelectric effect
and the Compton effect in the attenuation coefficient (1) of tissue for
a given energy (E):

M(E) = pp(E) + pc(E) = apfp(E) + acfe(E) (M

with fp(E)nd fc(E) two known mathematical functions that depend
only on the energy of the photon beam. op and «¢ are the coefficients
describing the contributions of the photoelectric and Compton effects
respectively. These values only depend on the tissue’s atomic number
(2).

From the two datasets at two different energies obtained at acqui-
sition or detection, it is then possible to solve a system of two equa-
tions with two unknowns, o, and o

J(LE) = apfo(LE) + acf(LE) @)

1L (HE) = apfi (HE) + atcf(HE) 3)

with @ (HE) and w(LE) the attenuation coefficients for high and low
energy X-ray beams.

After solving this system of two equations, each voxel in the
image has a pair of values (ap, (). These two values are then recom-
bined to artificially recreate different types of spectral image.

2.2. Spectral image creation

The different types of images generated by DECT platforms are
based on a recombination of the values for o, and o of each voxel.
This reconstruction can be made in the projection domain or in the
image domain depending on the temporal resolution of the tech-
nique. Indeed, DECT platforms with good temporal resolution allow
reconstruction from raw data in the projection domain. Conversely,
the image domain is used for platforms that cannot offer sufficient
temporal coherence between the two spectra acquired. This is also
called image-based reconstruction. Photoelectric and Compton basis
image pairs are processed to generate several types of images.

2.2.1. Material decomposition images

The decomposition of materials is usually based on low and high
kVp attenuations of two or three materials like iodine, water and cal-
cium. The characteristics of these basic materials are well-known and
used [4,11-13]. Any material can be expressed as a function of HU at
low and high kVp so its concentration in the tissues can thus be dis-
tinguished and quantified. With this method, several materials pres-
ent in the tissues (such as iodine, water or calcium) can therefore be
identified during examination (Fig. 1). However, it is still difficult to
identify and characterize components with very similar HU values
like blood and water. The principle of material identification with
respect to base materials is depicted in Fig. 1. Each material has a
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Fig. 1. Example of a geometrical illustration of material decomposition process in dif-
ferent materials based on their absorption linear coefficient (CT attenuation) at low
and high energies. Data were acquired on a multi-energy CT phantom (Gammex™
Technology) with a Aquilion ONE system (Canon Medical Systems).

specific position according to these characteristics (Z, attenuation).
Therefore, it is possible to identify a material according to its position
in relation to basic materials. The slope of the curve characterizes a
material with different concentrations (e.g., iodine or calcium) and
the position of the material on the curve is itself dependent on its
concentration [14—-19].

Decomposition of materials makes it possible to generate images
virtually, without bone (virtual non calcium) for bone marrow edema
assessment [20,21] or iodine (virtual non contrast or virtual unen-
hanced images) for substitution of a non-contrast phase [22,23] or, on
the contrary, with enhanced contrast with a kind of overlay of iodine
on images (iodine map imaging) (Fig. 2) [31,32]. On the iodine map,
iodine concentration can be measured in lesions for tumor staging
and characterizations or any organ by assessing its perfusion [24—34].
These specific material images are used in other clinical applications,
for example, to identify uric acid in gout [35—37] or to characterize
kidney stones [38—41].

Material image maps can also be used for treatment in radiation
therapy [42,43]. The use of DECT to generate electron density maps
relative to water and the effective atomic number (Z effective image)
improve the stopping power ratio prediction for the dose calculation
compared to the single-energy CT technique [44,45]. For photon ther-
apy, the main advantage is to improve contouring of the organ at risk
and target volumes, by using iodine subtraction, particularly in treat-
ment planning, when large vessels such as in the heart or bladder are
injected for high contrast enhancement [46—-48].

2.2.2. Virtual monochromatic images (VMIs)

Virtual monochromatic images (VMIs) simulate the appearance of
images obtained with a monochromatic X-ray source. They are gen-
erated by a process equivalent to that of the decomposition of materi-
als using the contribution of the photoelectric and Compton effect:

W(Em) = (1p) Jo(Em) + (pc) fe(En) )

where f,(En) and fc(Em) are functions that depend on the photoelec-
tric and Compton effects and p, and p. are the mass densities
obtained during decomposition of materials. The density values of
each pixel are then converted into monochromatic virtual images
and generate images at a single keV.

In practice, systems offer a wide range of energy levels, from 35 to
200 keV according to the DECT platform. Depending on the clinical
application, these images improve the contrast-to-noise ratio (CNR)
by using low energy level values (40 to 70 keV) enabling the
reduction in contrast agent volume [49,50] and reduce image arte-
facts (beam-hardening, blooming) with high energy level values
[49,51-53].
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1: Calcium at 300 mg/mL, 2: lodine at 10 mg/mL, 3: Fat tissue, 4: Brain tissue,
5: Calcium at 50 mg/mL, 6: Solid water, 7: Calcium 100 mg/mL,
8: lodine at 15 mg/mL, 9: lodine at 5 mg/mL, 10: lodine at 2 mg/mL
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Fig. 2. Illustration of the spectral dual-energy CT capabilities available on all the current dual energy CT platforms.
A, Conventional image of the multi-energy CT phantom (Gammex™ Technology) showing 10 inserts made of different tissue from which their characterization will be revealed

using the spectral images.

B, C, D, Virtual monochromatic images at 40, 70 and 135 keV, respectively, that show the iodine boost expected from both calcium and iodine at low keV.

E, Virtual non contrast image that simulates a conventional image without the iodine component. This explains the low density for iodinated inserts numbered 2, 8,9 and 10.

F, lodine image that shows the iodine component in the iodinated inserts numbered 2, 8, 9 and 10. Due to the limitation of a material decomposition into only two energies, the
calcium components found in the inserts numbered 1, 5 and 7 are noticeable in the iodine images.

G, Z-effective image that measures the average atomic number of a tissue. This map allows new contrast in CT such as observable with the insert numbered 3 that is made of fat

tissue (i.e., a low atomic number).

2.3. Technological aspects of dual-energy CT platforms

Several DECT platforms are available to generate or detect the two
photon spectra at high and low energy. Techniques and spectral per-
formances differ, and various types of spectral images are available
depending on manufacturers (Table 1).

2.3.1. Canon Medical Systems

For Canon Medical Systems, the two photon spectra are obtained
from three different spectral acquisition techniques for five CT sys-
tems. Acquisition and reconstruction parameters depend on the CT
system and are detailed in Table 2.

The rotate-rotate axial kVp-switching (Dual-energy rotate-rotate)
mode consists of performing one rotation on a volume with low tube
voltage (80 or 100 kVp) and then another rotation on the same vol-
ume with high tube voltage (135 kVp). Between these two rotations,
another rotation is performed without X-ray emission to let the CT
system invert the two voltage tubes. The two acquisitions are per-
formed on the same axial volume between 40 and 160 mm depend-
ing on the CT system. With this acquisition mode, the tube current
modulation system can be used. The process of material decomposi-
tion is performed on the raw data and the VMI energy levels range
from 35 to 135 keV.

In helical kVp-switching (dual-energy helical) mode, the acquisi-
tion is performed in helical mode by alternating the kVp (80 or 100
kVp and 135 kVp) at each rotation. For this purpose, the projections
are acquired over 360° with a switching time of 0.1 to 0.2 s. There is a
partial scan mode for dose reduction purposes that limits direct irra-
diation of radiosensitive organs. This mode cuts the X-rays when the
tube is around zero position with a no-exposure period before reach-
ing 0° and an identical period after 0°. The table moves slowly with
each rotation and a low pitch factor is automatically set by the CT sys-
tem according to the rotation time. With this acquisition mode, the
tube current modulation system cannot be used. The process of mate-
rial decomposition is performed in the image domain and the energy
levels of the VMIs with energy ranging from 80 to 135 kVp.
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Rapid kVp-switching consists of quickly and repeatedly switching
(<1 ms) from high (135 kVp) to low kVp (80 kVp) as the tube detector
rotates around the patient. During rotation, the rotation time (or the
number of projections) is divided into two equal parts between the
two voltage tubes. This tube potential switching provides data acqui-
sition from two different energy spectra, closely aligned, temporally
and spatially. Spectral reconstruction works by transforming views
acquired with one energy into the other to create deep learning
views using a trained deep neural network. Deep learning spectral
acquisition mode is available only with the Aquilion ONE Prism CT
system. Rapid kVp-switching can be carried out in helical (with a
pitch between 0.5 and 1.5 and beam collimations of 40 and 80 mm)
or axial (with volumes of 40 and 160 mm) acquisitions. The tube cur-
rent modulation system and the cardiac mode with gating can be
used. The process of material decomposition is performed in the raw
data domain itself rather than post-reconstruction in the image
domain. This is because raw data-based decomposition has been
demonstrated to be less impacted by beam-hardening and other
biases that occur when material decomposition is performed in the
image domain. The energy levels of the VMIs provide gray scale
images in any of 101 energy levels ranging from 35 to 200 keV.

For all acquisition modes, the smallest reconstruction slice thick-
ness available is 0.5 mm, with a reconstruction field of view (FOV) of
up to 50 cm and 5122 pixels matrix size. The iterative reconstruction
algorithm AIDR 3D is available for all CT systems, except for the Aqui-
lion ONE Prism. For this system, the deep learning spectral recon-
struction algorithm is available [54].

The different types of spectral images generated on the Canon
DECT systems are described in Table 1.

2.3.2. GE Healthcare

With GE Healthcare, ultra-fast kVp-switching is available on four
CT systems (Table 3). The principle of ultra-fast kVp-switching has
already been described in previous studies [55—61]. It consists of
quickly switching from 80 kVp to 140 kVp, which is needed to main-
tain sufficient energy separation between the two spectra. Fast kVp-
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Table 1
Different types of spectral images available on the different dual-energy CT platforms.
Image purpose Canon GE Philips Siemens
Simulate attenuation at a chosen single energy ~ Virtual monochromatic images = Monochromatic images Monoenergetic Monoenergetic images
(35 to 135 keV or 200 keV*) (40 to 140 keV) (40 to 200 keV) (40 to 190 keV)
Simulate a non-contrast phase Virtual non-contrast Virtual unenhanced Virtual non-contrast Virtual non-contrast
generated from a contrast acquisition image image image image

lodine content material decomposition
lodine content material suppression
Material characterization (Z effective)
Material characterization (Electron density)
Calcium content material decomposition
Uric acid content material decomposition

Liver fat content material decomposition

lodine map image

Z effective image

Electron density image
Ca/H20 and H20/Ca images
Uric acid curve

Material decomposition

Materiel supressed iodine (MSI)

Effective Z

Material decomposition
Material decomposition
GSI Fat

lodine no water
lIodine density

Z effective

Electron density
Calcium suppression
Uric acid

Iodine map image
DE Rho/z
DE Rho/z
Bone marrow image
DE gout image
Liver VNC/

Fat map image

* Only available on the Aquilion One Prism.

For GE dual-energy CT platforms, material decomposition of different elements is available, allowing different types of spectral images to be created.

GSI: Gemstome spectral imaging; VNC: Virtual noncontrast.

Table 2

Main characteristics of dual-energy CT platforms of Canon Medical Systems.
Model Aquilion One Prism Aquilion One Genesis Aquilion Prime SP  Aquilion Exceed LB Aquilion Lightning SP
DECT platform Rapid kVp Rotate -rotate axial Helical Rotate-Rotate Axial Helical

Switching or Helical kVp switching kVp switching or Helical kVp switching kVp switching
kVp available 80/135 80/135; 100/135 80/135; 100/135 80/135; 100/135 80/135; 100/135
Total filtration (eq mmaAl)* 11.7 mm* 11.7 mm* 11.7 mm* 11.7 mm* 8.35 mm*
mA range from 230 to 650 from 50 to 570 from 50 to 570 from 50 to 570 from 50 to 420
TCM system used SureExposure 3D SureExposure 3D No No No
Beam collimation Volume: from 40 to 160 Volume: from 40 to 160 Helical: 40 Axial & Helical: 40 Helical: 40
range (mm) & Helical: from 40 to 80 & Helical: from 40 to 80

Rotation time range (s)
Pitch
range

Temporal resolution max (ms)

Cardiac gating
Raw data or images space
Reconstruction algorithm

from 0.275 to 1
from0.5to 5

137

Yes

Raw data
DLSR

from 0.275to 1

from 0.35to 1

Volume: no pitch Automatic pitch
& Helical: Automatic pitch

137 175

No No

Raw data or images Images

AIDR 3D AIDR 3D

from 0.5to 1
Volume: no pitch
& Helical: Automatic pitch
250
No
Raw data or images
AIDR 3D

from 0.35to 1
Automatic pitch

175

No
Images
AIDR 3D

* At 120 kVp and large body scan field of view.
AIDR3D: Three-dimensional adaptive iterative dose reduction; DECT: Dual-energy CT; DLSR: Deep learning spectral reconstruction; TCM: Tube current modulation.

switching provides almost simultaneous spatial and temporal regis-
tration of projections. Consequently, the spectral data can be proc-

essed in the raw data domain.

This switching takes 0.5 ms on the Revolution GSI, and 0.25 ms
with other CT systems. While the mA is fixed on most CT systems,
the Quantix tube of the Revolution Apex platform provides synchro-
nized kVp and mA switching. This mA switching per kVp improves
the image quality (over 10% noise reduction) at low kVp and iodine
maps [62]. With the Revolution CT and Revolution Apex platforms, a

Table 3

3D collimator is added (post patient) to reduce scattering and beam-
hardening compared to the classic 1D collimator. kVp-switching can

be carried out in helical mode with a pitch factor ranging from 0.5 to

Main characteristics of dual-energy CT platforms of GE Healthcare.

1.5 and in axial mode but only for a volume of 40 mm. In helical
mode, a beam collimation of 20 and 40 mm can be used for Revolu-
tion GSI and Revolution Frontier and a beam collimation of 40 and
80 mm for Revolution CT and Revolution Apex platforms. Cardiac gat-
ing (Smart Cardiac) is possible for GSI acquisitions only on the Revo-
lution GSI and Revolution Frontier.

Model Revolution GSI Revolution Frontier Revolution CT & CT ES APEX platform

DECT platform Ultrafast kVp Switching  Ultrafast kVp Switching  Ultrafast kVp Switching Ultrafast kVp Switching
(GSI) (GSI Pro) (DL Xtream GSI) (DL Xtream GSI with Quantix tube)

KkVp available 80/140 80/140 80/140 80/140

Total filtration (eq mmAI)* 8.4 mm* 8.4 mm* 8.5 mm* 8.3 mm*

mA range 5-765 5-765 5-735 5-630

TCM system used No No No mA switching

Beam collimation range (mm) 20 &40 20 &40 from 5 to 80 from 5 to 80

Rotation time range (s) from0.5to 1 from0.5to 1 from 0.28 to 1 from 0.28 to 1

Pitch range from 0.531 to 1.531 from 0.531 to 1.531 from 0.508 to 1.531 from 0.508 to 1.531

Cardiac gating Yes Yes WIP GSI WIP GSI

Raw data or images space Raw data Raw data Raw data Raw data

Reconstruction algorithm ASIR ASIR-V ASIR-V & TrueFidelity™  ASIR-V & TrueFidelity™

* At 140 kVp and large body scan field of view.
ASIR: Adaptive statistical iterative reconstruction: DECT: Dual-energy CT; DL: Deep-learning; GSI: Gemstone spectral imaging; TCM: Tube current modulation;
WIP: Work in progress.
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Table 4
Main characteristics of dual-energy CT platforms of Philips Healthcare.
Model IQon Spectral CT Spectral CT 7500
DECT platform Dual CT Dual CT
kVp available 120 & 140 100, 120 & 140
Total filtration (eq 6.9 mm* 6.9 mm*
mmaAl)
mA range from 10 to 1000 from 10 to 1000
TCM system used DoseRight Z-DOM & 3D-  DoseRight Z-DOM & 3D-
DOM DOM
Beam collimation range  from 7.5 to 40 from 7.5 to 80
(mm)
Rotation time range (s) from 0.27 to 2 from 0.27 to 1
Pitch range from 0.07 to 1.5 from 0.07 to 1.7
Temporal resolution 135 135
max (ms)
Cardiac gating Yes Yes
Raw data or images Raw data Raw data
space
Reconstruction Spectral 8 levels Spectral 8 levels
algorithm
* At 140 kVp.

Z-DOM: Axis dose modulation; 3D-DOM: Angular and longitudinal dose modula-
tion; DECT: Dual-energy CT; DLSR: Deep learning spectral reconstruction; TCM:
Tube current modulation.

For all systems, 32 cm and 50 cm scanning FOVs are available,
with a native collimation of 0.625 mm. Images can be reconstructed
using a display FOV of 5 to 50 cm, matrix size of 5122 pixels and dif-
ferent algorithm generations: ASIR on Revolution GSI, ASIR-V on Rev-
olution Frontier and on Revolution CT and Revolution Apex
platforms. The new Deep Learning image reconstruction algorithm,
TrueFidelity™, is available for the two latter platforms.

The various types of spectral images generated on GE DECT sys-
tems are depicted in Table 1.

2.3.3. Philips Healthcare

Philips Healthcare has chosen to use dual-layer detector technol-
ogy (i.e., NanoPanel prism detector) (Table 4). The two photon spectra
are obtained simultaneously without any additional constraints com-
pared to a conventional helical acquisition, except for certain tube
voltage values. Indeed, only 80 and 100 kVp for the iQon and 80 kVp
for the CT7500 are not validated for spectral imaging. It is therefore
not necessary to define whether spectral reconstructions are desired,
before acquisition.

Both machines have a z-flying focal spot and the beam collima-
tions available are 40 mm for the iQon and 80 mm for the CT7500.
Typical pitch factors range from 0.07 to 1.5 (1.65 for CT7500) for table
travel speeds of 185 (600 for CT7500) mm/s. Cardiac gating can be
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prospective or retrospective and the temporal resolution can be as
low as 135 ms. Tube current modulation is identical to conventional
CT acquisition: Dose Right Index associated with Z-DOM or 3D-DOM
modulation and electrocardiogram (ECG) in cardiac acquisitions.

The material decomposition process is performed in the raw data
domain. Reconstruction slice thicknesses can vary from 0.67 to 1 cm
on 50 cm FOV and 5122 pixels matrix size. The spectral reconstruc-
tion algorithm is used for different reconstruction kernels.

The various types of spectral images generated on both Philips
DECT systems are depicted in Table 1.

2.34. Siemens Healthineers

For Siemens Healthineers, two-photon spectra are obtained dur-
ing the acquisition with two different dual-energy CT platforms
(Table 5).

On the dual-source CT (DSCT) platform, image datasets are
acquired with two X-Ray tube/detector pairs dephased by 95° for the
Somatom Force and Somatom Drive. One X-ray tube uses a low kVp
(70—100 kVp) and the other uses a high kVp with or without a tin fil-
ter (140 kVp or Sn150 kVp), resulting in better spectral separation
than other platforms developed by this manufacturer. Different kVp
pairs are available depending on the CT system, allowing adaptation
to the patient’s morphology or clinical indication for the CT examina-
tion. The use of two tubes, a low rotation time and smaller pitch fac-
tor means that cardiac gating CT scans can be performed with
temporal resolutions of 66 to 75 ms. However, the detector array of
the second tube is reduced to a width of 33 or 35 cm (50 cm for the
first tube), limiting the acquisition and reconstruction FOV to 33 or
35 cm.

With split filter CT platform, one X-ray tube/detector pair with a
120 kVp (or 140 kVp) tube voltage is coupled with two filters to split
the energy spectra into one low- (0.05-mm-thick gold filter) and one
high-energy (0.6-mm-thick tin filter) spectra. Both the acquisition
and reconstruction FOVs are 50 cm maximum. Rotation time ranges
from 0.25 to 1 s/rot depending on the CT system but the pitch factor
is limited to 0.25—-0.45. Cardiac gating cannot be performed with this
system. Temporal resolution ranges from 125 to 165 ms, depending
on the system.

With DSCT platform, several beam collimations can be used
whereas only one collimation is available with split filter CT. Also, the
tube CareDose 4D current modulation system can be used for all split
filter CT and DSCT systems. In addition, as the spectral images are
obtained in the image domain, the iterative reconstruction algo-
rithms ADMIRE or SAFIRE can be used for different reconstruction
kernels and slice thicknesses ranging from 0.5 to 10 mm. The spectral
images can be reconstructed with a 5122 pixel matrix for the two
platforms, and 7682 and 10242 pixel matrix only for DSCT.

Table 5

Main characteristics of dual-energy CT platforms of Siemens Healthineers.
Model Somatom Force Somatom Drive Edge+ Xcite Xceed GoTop
DECT platform Dual-source CT Dual-source CT Split Filter CT Split Filter CT Split Filter CT Split Filter CT
kVp available 70/Sn150; 80/Sn150; 80/Sn140; 100/Sn140; 120 kVp AuSn 120 or 120 or 120 or

90/Sn150; 100/Sn150; 80/140 80/140 140 kVp AuSn 140 kVp AuSn 140 kVp AuSn

Total filtration (eq mmaAl) 5.7 mm* 6.8 mm** 6.8 mm** 57mm* 5.7 mm* 5.5 mm***
mA range 40 to 2600 mA 40 to 1600 mA 20 to 800 mA 20 to 1200 mA 10 to 1300 mA 20 to 825 mA
TCM system used CareDose 4D CareDose 4D CareDose 4D CareDose 4D CareDose 4D CareDose 4D
Beam collimation range (mm)  from 38.4 to 57.6 from 24 to 38.4 384 384 384 384
Rotation time range (s) from 0.25to 1 from 0.28 to 1 from 0.28 to 1 from0.3to 1 from 0.25to 1 from 0.33to 1
Pitch range from0.2to 1.2 from 0.2to 1.2 from 0.25t00.45 from0.25t00.45 from0.25t00.45 from 0.25 to 0.45
Temporal resolution max (ms) 66 75 140 150 125 165
Cardiac gating Yes Yes No No No No
Raw data or images space Images Images Images Images Images Images
Reconstruction algorithm ADMIRE ADMIRE ADMIRE ADMIRE ADMIRE ADMIRE

* At 150 kVp, ** At 145 kVp and *** At 150 kVp.
ADMIRE: Advanced modeled iterative reconstruction; DECT: Dual-energy CT; TCM: Tube current modulation.
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The different types of spectral images generated on the Siemens
DECT systems are reported in Table 1.

2.3.5. Double helical acquisition

On certain CT systems, another technique is also used for dual-
energy acquisitions. This technique consists of making a first helical
acquisition with a low tube voltage, then a second one with high
tube voltage (with or without additional filtration). Its use remains
limited to reducing metallic artifacts, correcting beam-hardening or
characterizing urinary lithiasis. Indeed, the long time between the
beginning of the first acquisition and the end of the second does not
allow this technique to be used with iodinated contrast product
injection.

2.4. Assessment of spectral performance

Spectral images have quantitative capabilities of great clinical
importance as they improve the detection and characterization of cer-
tain lesions and can help treatment decisions for patients [31,63-65].
These quantitative parameters must be accurate and reproducible. To
assess the quality of spectral images on a single DECT platform or on
several DECT platforms with different technologies, many metrics are
used on both phantoms and patients.

On VMIs, classical metrics can be calculated from regions of inter-
est (ROIs) positioned on inserts on a phantom or on tissues/lesions in
patient images. From these ROISs, classical metrics such as HU values,
image noise but also signal-to-noise ratio (SNR) and CNR can be cal-
culated. In particular, these metrics make it possible to evaluate the
variation in contrast of a material or tissue/lesion depending on
the monoenergetic level. Furthermore, on the phantoms, to ensure
the accuracy of the HUs calculated in the spectral images, metrics
such as root-mean-square deviation or monochromatic bias are
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measured [66—73]. These can evaluate the difference between the
HU value measured in a given insert and its theoretical value. These
two metrics are also used to assess the accuracy of the iodine concen-
tration on iodine maps [61,66-71,74,75]. The higher the accuracy of
the HU and iodine, the better the spectral performance and the more
relevant the clinical results. In addition, these metrics can also be
used to ensure the relevance of electron density and effective Z maps,
used particularly in radiotherapy departments [42,43,47,76].

New so-called advanced metrics have recently been developed to
assess the quality of conventional CT images [77—79]. These metrics
are beginning to be used to assess the quality of VMIs as they allow
the assessment of other image characteristics [58-60,69,74,80-82].
Noise power spectrum (NPS) is used to evaluate the texture and
amplitude of noise according to keV. Task-based transfer function
(TTF) is used to evaluate the spatial resolution under near-clinical
contrast and noise conditions. Thus, for inserts containing an iodine
concentration, this will be calculated by taking into account the varia-
tions of noise and contrast (increase at low keV for both) as a function
of keV. Finally, the detectability index calculated from a model
observer can also be used to evaluate the detectability of a simulated
lesion. This metric is similar to the CNR but has the advantage of tak-
ing into account the noise and its texture, the blur from the TTF and a
visualization function that simulates the response of the human eye.
This metric is very useful for determining the optimal monoenergetic
level for detecting a lesion based on its size and composition, which
is essential in clinical routine [58,59,69,74,80].

To evaluate all these metrics, it is essential to use suitable phan-
toms. For classical metrics, the phantoms must be composed of
inserts of sufficient size and materials of similar composition/density
to the tissue present in the spectral images. Thus, iodine inserts of dif-
ferent concentrations are used to assess the accuracy of HUs and
iodine concentration. Furthermore, it is essential to know the
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Fig. 3. Illustration of Color K-edge imaging capabilities enabled by the spectral photon-counting CT technology in a phantom with multiple materials.

A. Schematic drawing, spectral photon-counting CT (SPCCT) images and material decomposition images into water, iodine and gadolinium K-edge of a phantom containing
tubes with increasing concentrations of contrast agents (2, 5, 8, and 12 mg/mL), with calcium phosphate and phosphate buffered saline tubes. While conventional image failed to
provide specific imaging of each contrast agent and that iodine images failed to differentiate between iodine and calcium, gadolinium K-edge image showed specific differentiation

of gadolinium tubes without cross-contamination with the advantage to be quantitative.

B, Comparison of actual and SPCCT measured contrast agent concentrations, showing a linear correlation (Image reprinted, with permission, from reference [93]).
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variation of the linear attenuation coefficient and the theoretical HU
value as a function of keV for each insert. There are many phantoms
available for measuring these classical metrics [58-60,66-
70,74,80,83]. However, these phantoms are not always suitable for
evaluating advanced metrics. Indeed, the NPS must be measured in a
phantom with a homogeneous cross-section, which is the case for
most classical image quality phantoms but for those used to measure
classical metrics. The TTF must be calculated on inserts of suitable
sizes with a sufficiently large homogeneous area around the insert.
Furthermore, for spectral images, it must be calculated on inserts
similar to the clinical lesions studied (i.e., iodine or calcium inserts).
However, to date, there are no phantoms on the market with sections
that meet these different requirements simultaneously. Only the
Mercury v4.0 (Gammex™ Technology) the phantom allows TTF cal-
culation but only on a single iodine insert at 10 mg/ml [83,84].

It is therefore essential to assess spectral image quality to ensure
that radiologists can make accurate clinical diagnoses if radiotherapy
treatment is to be made more reliable. Several metrics exist to assess
image quality. These require suitable phantoms and these are not

Table 6
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always available on site. To ensure consistent performance over time,
quality control of spectral images should be implemented [85,86].

3. Spectral photon counting CT technology
3.1. Principles

Spectral photon-counting CT (SPCCT) is a new, emerging technol-
ogy in the field of spectral imaging [87,88]. It makes use of energy-
resolving detectors, called photon-counting detectors (PCDs),
recently integrated into clinical CT platforms [89,90]. PCDs are made
of semi-conductive material which makes it possible to convert
incoming photons directly into electrical charges which migrate into
a counting (Application-specific integrated circuit, ASIC). The ASIC
shapes a voltage pulse proportional to the incoming photon energy,
and each photon can be differentiated in amplitude according to its
energy [91]. The transmitted spectrum can thus be characterized into
multiple energy bins as defined by their different energy levels. In
comparison to dual-energy CT abilities, SPCCT has the potential to

Main characteristics of current spectral photon-counting CT systems suitable for clinical imaging. Note that two of them are designed with small bore gantry for head (Samsumg
Healthcare) and for extremities (MARS Bioimaging limited system) imaging and that 2 of them have been FDA-cleared (Siemens Healthineers and Samsumg Healthcare).

Manufacturer CcT
plateforms

PCD
materials

Detector siz
at isocenter

Geometry

e

Field-of-view

Energy
thresholds

Current
status

Canon Medical Systems Aquilion Cdzt

ONE VISION

Single source 0.342 mm

GE Healthcare LightSpeed VCT

CT Scanner

Silicon Single source 0.250 mm

MARS Bioimaging Cdzt

Limited (MBI)

Single source 0.110 mm

Philips
Healthcare

Philips iCT
plateform

CdzT Single source 0.274 mm

OmniTom Portable CdT
PCD Head CT

Samsumg
Healthcare

Single source 0.12 mm (HR);
0.4 mm (HR);

50 cm

50 cm expected

11cm

50 cm

25cm

0.7 mm (standard)

NAEOTOM
Alpha

Siemens CdT Dual-source

Healthineers

0.300 mm (standard); 50 cm;

0.150 mm (HR) 36 cm used for cardiac

scans;

36 cm for high helical

pitch scans

5 available

8 available

5 in “charge summing
mode”

5 in standard mode;
5in HR modes

3 available

4 in standard mode;
2 in HR mode

Clinical prototype evalu-
ation on going ;
Not cleared or
approved by the U.S.
FDA
or any other global
regulator for commer-
cial availability;
Clinical trial pending

Clinical prototype evalu-
ation on going ;
Not cleared or
approved by the U.S.
FDA or any other
global regulator for
commercial
availability

Not cleared or approved
by the U.S. FDA or any
other global regulator
for commercial avail-
ability;

Pre-clinical research;
Clinical trial pending
Clinical prototype evalu-

ation on going;

Not cleared or
approved by the U.S.
FDA or any other
global regulator for
commercial availabil-
ity;

Clinical trial and pre-
clinical research in
progress

FDA-cleared in march

2022;

Clinical trial pending
FDA-cleared in septem-

ber 2021;

Pre-clinical and Clini-

cal research on

Human ;

Commercially

available

Parameters listed are based on the current status of the manufacturer’s development and are expected to evolve in a near future. Cd: Cadmium, Z: Zinc, T: Telluride.
FDA: Food and Drug Administration; PCD: Photon-counting detectors; U.S.: United States of America; HR: High-resolution mode.
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provide more complete, accurate sampling of the energy dependence
found in the CT images. Many advantages still in current develop-
ment can be expected. However, it is worth mentioning that SPCCT
opens up an extended approach to spectral imaging by first improv-
ing the energy separation between high and low energy photons
[92]. This offers greater resolution of photoelectric and Compton con-
tribution/absorption coefficients that will enhance the current known
spectral capabilities such as virtual monochromatic images (VMI).
The second benefit will be that additional materials can be added to
the spectral decomposition of the images based on their K-edge
energies (ie., the binding energy between the K-shell and the
nucleus) [93—107]. This can be understood as a third unknown factor
added to the equation by Alvarez and Macovsky [10] (Eq. 5).

M(E) = anP(E) + aCfC(E) + amateriulfmuterial(E) (5)

where fqeriqr(E) is mathematical function that characterized photo-
electric effect of the K-edge material and &;,qreriq iS the photoelectric
absorption coefficient of the material.

This approach, referred to as K-edge imaging, is a real break-
through in CT post-processing and comes with the promise of being
available in the next generation of clinical SPCCT systems. It mainly
promises to overcome the limitations of dual-energy CT technology
which cannot specifically or quantitatively separate different materi-
als in the same voxel (or spatially co-registered), such as iodine and
calcium (Fig. 3). These images will soon be offered to radiologists
together with the conventional HU-image which is impossible with
conventional CT or dual-energy CT. K-edge imaging is similar to the
nuclear imaging twin modality of positron emission tomography-CT
in which low-resolution functional information on 18F-fluorodeoxy-
glucose uptake is superimposed on high-resolution anatomical infor-
mation, opening a completely new CT approach for functional,
molecular or inflammation imaging and many other areas requiring
exploration.

3.2. Technical aspects

The energy-resolving capabilities of PCD have many advantages
over conventional energy-integrating CT detectors that include: (i),
individual photon counting; (ii), individual photon energy discrimi-
nation; (iii), No electronic noise (threshold to discriminate between
electronic noise and X-ray pulse); (iiii) Improved spatial resolution:
the small charge cluster size and absence of electronic noise make it
possible to use a smaller pixel size than with conventional scintillator
and photodiode CT detectors; (v), improved energy weighting of the
low-energy photons leading to higher CT attenuation and contrast
within the tissue; and (vi), no dead space between detectors [89,107].

These technical aspects will bring new important features to clini-
cal imaging that include: (i), higher spatial resolution: higher modu-
lation transfer function (MTF) in the usual range 0—15 Ip/cm and
significant strength in the extension to 30 Ip/cm; (ii), reduced noise
at low dose since photon counting does not have a noise floor from
electronics; (iii), reduced noise in the decomposition of two base
materials from a greater number of energy bins detected and stored
in the data; (iv), possibility of decomposing more than two base
materials from multiple energy bins; (v), improved, ;more adaptable
reconstruction contrast from multiple energy bins; and (vi), possibil-
ity to map K-edge materials (like gadolinium, gold or bismuth) with
dynamic assignment in software.

3.3. Towards clinical imaging

Over the past five years the SPCCT field has made considerable
progress with the implementation of PCD with high-count-rate capa-
bilities in wide-bore CT platforms. So far, this shift has proved suc-
cessful with two FDA-cleared systems (i.e., one wide-bore for all
applications) [108] and one small-bore for head imaging.
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Nevertheless, despite the various technical choices of the different
manufacturers, many pre-clinical and clinical studies have provided
evidence that SPCCT can be considered as the future of spectral CT
imaging (Table 6)[109-117].

4. Conclusion

Spectral CT imaging is a constantly developing field which gained
interest when dual-energy CT systems became implemented in clini-
cal practice twenty years ago. Despite the different manufacturer’s
choices in terms of detection chain, X-ray source, reconstruction
chain and other parameters, they all provide radiologists with the
possibility of benefitting from the tissue’s energy dependence via vir-
tual monochromatic images and breaking down materials into water,
iodine and other materials. Nevertheless, the spectral CT imaging
field has not stopped evolving both in overcoming the limitations of
dual-energy CT and exploring new approaches in CT imaging via new
developments such as K-edge imaging in spectral photon-counting
CT technology.
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