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ABSTRACT Spectral photon-counting computed tomography (sCT) appears as a promising imaging tech-
nique for clinical applications thanks to its ability to offer low dose and possibility of quantitatively analyzing
the composition of materials in a pixel. However, due to the dispatching of photons into different energy
bins, the quality of sCT image at each energy bin is considerably degraded. We propose a reconstruction
method for sCT images by combining multi-energy information. The method is based on clustering pixels
containing similar material compositions, performing linear fittingwithin each class for all the energy images
two-by-two, projecting the pixel values of the images at other energy bins to the pixel of the image at the
current energy bin, and combining the original pixel value and projected pixel values. The results on both
simulation and real data demonstrated the effectiveness of the proposed method, in terms of both image
reconstruction quality and material decomposition accuracy.

INDEX TERMS Image reconstruction, multi-energy information, data clustering, linear fitting, projection
data, denoising.

I. INTRODUCTION
As a novel kind of computed tomography (CT), spec-
tral photon-counting CT (sCT) generates usually three or
more sets of data with one scanning owing to the use of
photon-counting detectors, which have the ability to count
separately the number of photons having different energies.
Such energy discrimination ability enables sCT to produce
not only at least different anatomical images referred to dif-
ferent energy bins but also functional images indicating the
composition of materials in the object, including the category
and concentration [1].

However, more energy bins also mean smaller photon
numbers within one energy bin for a given energy range,
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which will inevitably degrade image reconstruction quality.
Therefore, various methods were developed for improving
the reconstruction quality of sCT images. An intuitivemanner
to improve sCT images would be to use directly existing
methods devoted to conventional CT images. In the projection
domain, Hsieh developed an adaptive filtering according to
the noise property to reduce artifacts [2]. La Riviere proposed
a penalized likelihood smoothing model on the sinogram [3].
Wang et al. presented a penalized weighted least-squares
approach to reduce sinogram noise [4]. However, because of
the difficulty to accurately model the noise in CT system,
some operations will bring in unexpected artifacts in the
reconstruction, which could in certain cases be avoided in
the image domain. In image domain, iterative methods are
still the most widely used in the reconstruction [5], ranging
from the original algebraic reconstruction method [6] to the
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methods with empirical knowledge [7], [8]. More specifically
for sCT reconstructions, Gao et al. proposed a compressive
sensing approach that utilizes a prior rank, intensity and
sparsity model (PRISM) for reconstruction [9]. Zhang et al.
developed a reconstruction method by making use of the
sparsity and similarity in sCT images [10]. Rigie and La
Rivière proposed a constrained total nuclear variation method
for joint reconstruction of multi-energy reconstruction [11].
Niu et al. utilized a total image constrained diffusion tensor
for sCT reconstruction [12].

In fact, in different images corresponding to different
energy bins of sCT, at the same pixel (position), the relation-
ship between image pixel values is directly linked to material
attenuation coefficients at these energy bins. This constitutes
an important point exploited by Zhang et al. [10], who found
the mapping relationship between attenuation coefficients
at different energy bins and introduced a piecewise fitting
method for regularizing their iterative reconstruction method.
Their reconstruction method however works only for mate-
rials without K-edge. It is not suitable for materials with
K-edge while, in medical applications, contrast agents such
as Gd and I often present K-edges within the photon energy
range in sCT.

In the present study, we propose a new sCT reconstruc-
tion method that allows dealing with materials with K-edge.
The method is based on clustering pixels containing simi-
lar material compositions, performing linear fitting within
each class for all the energy images two-by-two, project-
ing the pixel values of the images at other energy bins
to the pixel of the image at the current energy bin, and
combining (median filtering) the original pixel value and
projected pixel values. The rest of the paper is organized
as follows. In section II, the flowchart and details of the
proposed method are described. In section III, experiments
and results on both simulation and real data are presented,
followed by sections IV and V respectively for discussion and
conclusions.

II. METHODS
A. THEORY BASIS OF THE METHOD
The traditional representation of the attenuation coeffi-
cient is either effect-based or material-based one [18], [19].
Here, considering the k-edge property of the material,
the attenuation coefficient at a pixel (i.e. image pixel
value) is represented as the particular mixture of the two
effects [20]–[22],

µ (Ex,E)=fp (Ex) gp (E)+fc (Ex) gc (E)+
N∑
α=1

µmα (E) ρα (Ex),

(1)

where gp (E) and gc (E) are respectively photoelectric
absorption and Compton effects, fp (Ex) and fc (Ex) are the
constants that are determined by the materials in pixel ⇀x ,
N is the number of K-edge materials in pixel ⇀x , µmα (E)
is the mass attenuation coefficient of K-edge material α at

energy E , and ρα (Ex) is the corresponding density. Eq. (1) can
be represented by two parts

µ (Ex,E) = µNo (Ex,E)+ µK−edge (Ex,E) , (2)

where µK−edge (Ex,E) denotes the K-edge effect, and
µNo (Ex,E) the photoelectric absorption and Compton effects.
By representing amaterial as a linear combination of two base
materials (water and bone) [10], it follows

µ
ζ
No (Ex,E) = a1µWaterNo (Ex,E)+ a2µBoneNo (Ex,E) , (3)

where a1 and a2 arematerial-dependent constants. As a result,
Eq. (4) can be written as

µ (Ex,E) = a1µWaterNo (Ex,E)+ a2µBoneNo (Ex,E)

+

N∑
α=1

µmα (E) ρα (Ex). (4)

In the work of Zhang et al., materials without K-edge in
humans are classified into water-like and bone-like materials.
That is to say, for water-like material, a1 ≈ 1, a2 ≈ 0;
for bone-like material, a1 ≈ 0, a2 ≈ 1. Thus, consider-
ing the pixels with K-edge materials, Eq.(4) can further be
expressed as

µ (Ex,E) = µWaterNo (Ex,E)+
N∑
α=1

µmα (E) ρα (Ex), (5)

or

µ (Ex,E) = µBoneNo (Ex,E)+
N∑
α=1

µmα (E) ρα (Ex), (6)

For a given pixel, Ex is known and Eq. (5) becomes

µ (E) = µWaterNo (E)+
N∑
α=1

µmα (E) ρα. (7)

Thus, if a pixel only contains one material with K-edge,
which is the most common case in medical diagnosis,
the attenuation coefficient is actually the linear function
of concentration within each energy bin. For the same
pixel at all the energy bins, as the concentration is fixed
and the attenuation of water changes little (which can
thus be regarded as a constant), µ is also a linear func-
tion of the concentration if there is only one material
in the pixel.

The flowchart of our method is illustrated in Fig. 1. First,
primary images at different energy bins are reconstructed
using basic reconstruction methods (FBP for simulation and
SART for physical CT in the present study). The next step is
to find the image pixels having similar features (attenuation
coefficient values and their variations at each energy bin)
and label them as the same class by clustering in the 3D
patches. Here, the common k-means algorithm is utilized.
Note that the clustering of patches carries both spatial and
energy information, and that the pixels at the same position
for each energy bin are labelled as the same class. Finally,
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FIGURE 1. Flowchart of the proposed method for one energy-bin projection.

the pixels in one energy bin for all the classes are projected
into all the other energy bins and form the final reconstructed
images. The projection procedure is implemented by the fol-
lowing steps. The patches (corresponding to the center pixels)
in the same class are arranged according to the energy bin.
Then, linear fitting is made for all the patches labelled as the
same class in any two energy bins separately, thus yielding
the fitting coefficients for any two energy bins for each class.
By using such image value fitting two-by-two, an image pixel
value at one energy bin can be estimated from the image
pixel values at all the other energy bins. That is, for a sCT
system producing five images corresponding to five energy
bins, a pixel will have five attenuation coefficients (i.e. pixel
values): the current (original) image value and the other four
image values mapped (estimated) from the other four energy
bins. A filter is applied to the five values to obtain a single
value that presents reduced noise, thus improving the quality
of the reconstructed image. In the next paragraphs, the main
elements of the framework will be presented in detail.

B. CLUSTERING FOR 3D PATCHES
As linear relationship exists between pixels having similar
composition, different material compositions obey different
fitting. The first step then is to classify the pixels of the
reconstructed images. The classification is operated on the 3D
image, which is formed by stacking the 2D images at different
energy bins. In view of the influence of noise and spatial cor-
relation between pixels, we perform the classification patch
by patch. To this end, 2D patches in primary reconstructed
images at all bins are arranged to form a set of 3D patches,
the third dimension of which represents energy dimension.

Denoting the primary reconstruction image as

U = [µ (1) ;µ (2) ; ...;µ (m) ; ...µ (M)] , (8)

where M is the total number of energy bins, and µ (m) is
the reconstructed image for the mth energy bin, which is
shaped as

µ (m)=

µ11 (m) · · · µ1NI (m)
...

. . .
...

µNI 1 (m) · · · µNINI (m)

 , m=1, 2, . . . ,M ,

(9)

where NI × NI is the image size. Then the cluster unit X is
represented by

Xij =
[
xij(1); xij(2); . . . ; xij(M );

]
, (10)

xij(m)=


µ(

i− p+1
2

)(
j− p+1

2

)(m) · · · µ(
i− p+1

2

)(
j+ p−1

2

)(m)
... µij(k)

...

µ(
i+ p−1

2

)(
j− p+1

2

)(m) · · · µ(
i+ p−1

2

)(
j+ p−1

2

)(m)

 ,
m = 1, 2, . . . ,M , µij(m) ∈ µ(m) (11)

where xij (m) is the 2D patch at energy bin m centered at
the position (i, j), µij (m) is the primary reconstruction at the
position (i, j) for themth energy bin, Xij denotes the 3D patch
to be clustered centered at the position (i, j), P× P is the 2D
patch size for one energy bin, of which P is usually selected
as an odd number. Thus, each 3D patch is of size P×P×M .

The key point will be to extract the features of 3D patches
for clustering. To better bring out the feature of each material,
the attenuation coefficient of water is first removed from the
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spatial image (at each energy bin) by subtracting from the
latter the pure water attenuation coefficient. The processed
cluster is then expressed as

x ′ij(m) = xij(m)− xwater (m), m = 1, 2, . . . ,M , (12)

X ′ij =
[
x ′ij(1); x

′
ij(2); . . . ; x

′
ij(M );

]
(13)

For different patches, the parameters such as mean,
first-order differential and second-order differential of atten-
uation coefficients and its mean are combined into a vector
as the feature for classification.

Vij =
[
X ′ij; ∇X

′
ij; ∇X

′
ij; ∇

2X ′ij; ∇2X ′ij
]
, (14)

where X ′ij is the mean of X ′ij,∇X
′
ij is the first-order differential

of X ′ij in the 3rd dimension (namely the energy bin dimen-

sion), ∇X ′ij is the mean of ∇X ′ij, ∇
2X ′ij is the second-order

differential of X ′ij in the 3rd dimension, and ∇2X ′ij is the mean
of ∇2X ′ij.

K-means algorithm is then chosen to cluster the features.
The number of classes is the most important parameter in
k-means clustering. If K is too small, pixels containing differ-
ent materials will be classified into the same class, which will
result in missing classes and reduce fitting accuracy within
the class. If K is too large, pixels containing the samematerial
will be classified into different classes and the number of
pixels in one class will be small, which will negatively impact
fitting results. K is material-dependent; ideally, the number of
classes should be set as the same number of materials. How-
ever, in practice, accounting for the influences of material
edges and noise in the image, we heuristically set the number
of classes as twice the number of materials.

Meanwhile, k-means algorithm is sensitive to the selection
of initial points. To cope with this problem, in the clustering
process, several repeated k-means algorithms with random
initials are applied on the 3D patches. If the patches in two
continuous operations are clustered to the same class, they
will be regarded as reliable patches and the class label is
kept for further fitting. Otherwise, they will be regarded as
unreliable patches and will not be considered in the next
fitting step.

C. LINEAR FITTING BETWEEN BINS
For the patches in the same class, fitting is made between each
two energy bins. Let

{
Vk1,Vk2, . . . ,VkNm

}
be the patch set

for class k , where Nk is the total number of patches for class
k , k = 1, 2, . . . ,K , and K is the total number of classes.
Considering that a point is often polluted by noise, if fitting
is made point by point, the fitting result will likely be affected
by the noise. Therefore, the P × P points in the 2D patch at
each bin are utilized for fitting. Meanwhile, to preserve the
edges of the image, the weighted mean of the points at each
bin is employed, of which the weight is defined as

W =
1
PD
, (15)

where D is the City distance from the neighbor position to
the central pixel within the 2D patch. In our method, least
square error method (LSE) is adopted to perform the fitting
between every two bins. Thus, for each class, M ×M group
fitting coefficients will be generated, which will be utilized
for further mapping.

The fitting results from bin p to bin q is calculated by

µ
p
ij (q) = apq (k) µ̄ij (p)+ bpq (k) ,

k = 1, 2, . . . ,K , p, q ∈ 1, 2, . . . ,M , if µij ∈ k, (16)

where µpij (q) denotes the fitted attenuation coefficient from
bin p to bin q, µ̄ij (p) is the weighted average within the 2D
patch for the energy bin p, apq (k) and bpq (k) designate the
fitting coefficients for the kth class. Thus, after traversing all
the patches in the K class, for all the positions in each energy
bin,M−1 fitting results will be obtained from the other bins.
If counting the bin itself, M reconstructions will be utilized
for the next operation (post-denoising).

D. REFINEMENT OF FITTED IMAGES
After the fittings, we obtain M reconstructed images corre-
sponding to the M energy bins. The next step is to improve
the current reconstructed image by making use of the fitting
results (i.e. the M − 1 fitted images generated from the
fittings). The first idea would be to average the M images to
reduce noise that is the principal problem in sCT. To this end,
weighted averaging is adopted because it has the advantage
of producing stable denoising results. However, considering
the characteristic of the data acquired from each energy bin,
targeted filter is selected to get better denoising performance.
If a point in the reconstructed image at one energy bin suffers
from noise, the fitting results (i.e. fitted images) from this bin
to all the remaining bins will also be noised because the fitting
involves all the energy bins. Therefore, in the present study,
we choose median filter to achieve the averaging operation,
which takes the current reconstructed image and all the fitted
images into account. It is expressed as

µ̃ij (q) = Med
{
µ1
ij (q) , µ

2
ij (q) , . . . , µ

K
ij (q)

}
,

q = 1, 2, . . . ,M (17)

Actually, with respect to the original reconstructed image,
the fitted images are relatively far away from their respective
original image. This can be caused by the mixture (which has
complex material compositions) or wrong clustering. There-
fore, to make the filtered images more reliable, we measure
the relative error between the fitted values and original values.
If the error is larger than a threshold, the fitted values are
abandoned and the corresponding pixels keep the original
values, namely

µ̃′ij (q) =


µ̃ij (q), if

∣∣µ̃ij (q)− µij (q)∣∣/ ∣∣µij (q)∣∣
< threshold

µij (q), if
∣∣µ̃ij (q)− µij (q)∣∣/ ∣∣µij (q)∣∣
≥ threshold .

(18)
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where µ̃′ij (q) is the final estimation of the attenuation coeffi-
cient for bin q at position (i, j). After the operation in Eq. (18)
we obtain the final refined image.

III. EXPERIMENTAL AND RESULTS
A. SIMULATION
1) PHANTOM AND EVALUATION METRICS
The projection data of sCT was simulated using INSA soft-
ware Virtual X-ray Imaging (VXI) [16]. The sCT system
consists of a PCD with 700 pixels arranged in line. The
spectrum was simulated based on Birch & Marshall model
for tungsten target material without filtration. The target
angle was 17◦, with tube voltage of 100kVp, tube current
100 µA and spectrum resolution 1 keV. The detector has
energy-resolving ability of 5 energy bins. The energy bin
ranges are 30-39, 40-49, 50-59, 60-69 and 70-79 keV. In our
experiments, the phantom was scanned with 600 projection
views from 0◦ to 360◦ of equal interval, and the reconstructed
image size is 380×380. The 3D patch size was set as 3×3×5,
and the threshold as 0.3.

The simulation phantom was designed as illustrated
in Fig, 2(a). It is a big cylinder made up of PMMA of radius
130 mm, which was digged out 12 holes to fill up water,
gadolinium (Gd) and iodine (I). For Gd, the concentrations
were separately set as 2, 4, 6, 8 mg/cc, and for I as 1, 3.5,
7 and 14 mg/cc. The 12 holes are regarded as the regions of
interest (ROIs), and the evaluations are made on the ROIs.

To evaluate the performance of the reconstruction, root
mean square errors (RMSE), contrast-to-noise ratio (CNR)
and signal-to-noise ratio (SNR) of the 12 ROIs are utilized,
which are respectively defined as

RMSE (m)

=

√√√√√∑
⇀x

(
µ⇀x (m)− µ

GT
⇀x
(m)

)2/
N 2
I ,

m = 1, 2, . . . ,M , (19)

CNR (m)

=
|µROI (m)− µBG (m) |√
σ 2
ROI (m)+ σ

2
BG (m)

, m = 1, 2, . . . ,M , (20)

SNR (m)

= 10 log

∑
⇀x

∥∥∥µGT⇀x (m)
∥∥∥2/∑

⇀x

∥∥∥µ⇀x (m)− µGT⇀x (m)
∥∥∥2
 .
(21)

whereµ⇀x (m) andµ
GT
⇀x
(m) are respectively the reconstructed

and ground-truth at position ⇀x and energy bin m, µBG (m)
(or µROI (m)) represents the mean attenuation coefficient of
background (or ROI), and σBG (m) (or σROI (m)) the standard
deviation of the latter.

The material decomposition results were obtained using
the L1-norm method [25]. To assess the decomposition
results, the obtained material images (a material image is a

FIGURE 2. Results of reconstruction at energy bin 70-79 keV. (a) The
phantom; (b) The first row shows the primary reconstruciton by FPB for
each energy bin, and the second row shows the projection for the
reconstruction of energy bin 70-79 keV from each other energy bin;
(c) the comparison of reconstruction for the energy bin 70-70 keV.

spatial image that contains only one single material) are first
visually compared with the ground-truth. Then, the values
within the ROIs are compared with the ground-truth and the
standard deviations.

2) RECONSTRUCTION COMPARISON
Fig. 2(b) illustrates the original reconstruction by FBP for five
energy bins and the fitting results from the four bins to the
energy bin 70-79 keV. Fig. 2(c) shows the final reconstruction
from Fig. 2(b) at energy bin 70-79 keV, together with the
ground-truth and reconstructions from FBP and TV. It can
be observed that the results of our method are the closest to
ground-truth.

More quantitatively, TABLE 1 gives RMSEs and SNRs
of the original image and our fitted image for each energy
bin. Clearly, our method has the smallest RMSE and the
largest SNR. The TV method gives large RMSE and small
SNR. With respect to FBP, the improvement in RMSE of
our method for different energy bins is respectively 1.53%,
6.00%, 4.50%, 9.07%, 14.36%, and the improvement in
SNR is respectively 1.01%, 4.38%, 3.48%, 7.18%, 12.34%.
In other words, the proposed method improves RMSE and
SNR for all the energy bins. Concerning CNR, our method
shows better performance compared to FBP, but is not as
good as TV. This is because the materials within the phantom
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TABLE 1. Comparison of results on RMSEs, SNRs and CNRs.

are averagely distributed in the ROIs; TV has better ability
to smooth the region, but at the same time may alter actual
values of reconstructed image and consequently impact the
subsequent material decomposition.

3) DECOMPOSITION COMPARISON
As material decomposition is one of the most impor-
tant applications of sCT, reconstructions are compared in
terms of decomposition results using L1-norm decomposi-
tion method. The reconstructed images are decomposed into
Water, PMMA, I and Gd, as shown in Fig. 3. It is observed
that the decomposition results using our method contain less
noise and are closer to the ground-truth.

FIGURE 3. Results of material decomposition based on the images
reconstructed using FBP, TV and the proposed method.

Furthermore, when comparing the fitting lines plotted
in Fig. 4, we observe that although the results of our method
were not as smooth as those of TV, the fitting line of our
method is closer to the ground-truth compared to the other
methods.

FIGURE 4. Decomposition results evaluation of FBP, TV and our method.
(a) Gd; (b) I.

B. REAL DATA
1) ON PHYSICAL PHANTOM
Two physical phantoms (Fig. 5) respectively filled with Gd
(or I) and water were utilized to evaluate the performance
of the proposed method. The phantom is made of PMMA
with the diameter of 100mm. The concentration of Gd was
set from 0.1 mg/cc to 15 mg/cc, and that of I from 0.1 mg/cc
to 15 mg/cc, as marked by the number in each disk. The
phantom was scanned by Philips sCT prototype with the
source current 220 mA, source voltage 120 keV and pro-
jection views 2400 uniformly distributed over 360o. The
sCT system contains 924 detectors, each of which contains
5 energy bins, with thresholds set as 30, 51, 62, 72 and
81 keV. The performance is evaluated in terms of both image
reconstruction and material decomposition.

FIGURE 5. Physical phantoms.

Fig. 6 shows the reconstruction results for each energy bin
using SART, TV and our method. The SART and TVmethods
were implemented using RTK toolkit [17]. It is observed
that after utilizing information from other energy bins, the
artifacts of the reconstruction for each energy bin are visually
reduced.
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TABLE 2. Reconstruction comparison in terms of CNR.

FIGURE 6. Reconstruction results for different energy bins with K-edge
and monoE reconstruction of the K-edge. Rows 1 and 2: reconstruction
for Gd. Rows 3 and 4: reconstruction for I.

Generally, there lacks the ground-truth for real data (except
physical phantoms). To maintain the consistency in the eval-
uation of the real data, the CNRs of the ROIs are calculated
to perform comparison, as given in TABLE 2. Our method
clearly improves the CNR with respect to SART and shows
most of the time better performance than TV.

Fig. 7 displays the ground-truth of the physical phan-
tom and the material decomposition results derived from
the images reconstructed using SART, TV and proposed
methods. The ROIs with low concentrations (yellow and
green rectangles) and special shape (red rectangle) are also
zoomed up. We observe that our method is more effective
for the ROIs both with low concentrations and of special
shape. It distinguishes more pixels of low concentration and
the ROI regions are more fully filled. For other non-ROI
regions, our method also reduces substantially artifacts.

FIGURE 7. Decomposition results for physical phantom with Gd and I,
respectively. The right column for each image is the region with low
concentrations (yellow and green rectangle) and of special shape (the red
rectangle) in the blown-up form. The images for the same region for all
the methods are displayed in the same scale.

FIGURE 8. Decomposition value comparison: the axis is the logarithm of
the concentration; each star represents the mean value within the ROI
and the line segment through each star is the responding absolute
standard error. (a) Gd; (b) I.

More quantitatively, material concentration and standard
error for each ROI are plotted in Fig. 8. The axes are grad-
uated as the logarithm of concentration to better visualize the
difference, as the concentration of materials in the phantom
has mainly small values. The ground-truth is the line pass-
ing through the origin of coordinate system. As observed,
the results of our methods are most of the time the nearest
to the ground-truth and have the smallest standard errors.

2) ON RABBIT
The rabbit injected with Gd was fixed in the container
scanned by the physical sCT. Four tubes filled with Gd
with concentrations of 10, 5, 2 and 0 mg/cc (red rectangle
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FIGURE 9. Reconstruction on rabbit data at energy bin with K-edge (rows
1 and 3) and monoE reconstruction at K-edge (rows 2 and 4).

in Fig. 10) were fixed in the container and scanned together
with the rabbit to act as a reference. The system parameters
of sCT were set the same as those for the physical phantom
described before. Fig. 9 shows the reconstructions from the
sinograms of 30-50 keV that contains the K-edge energy of
I and those of 51-61 keV that contains the K-edge energy of
Gd. For the reconstruction at one energy bin, it is not easy
to observe the difference since the width of the energy bin is
too large. In contrast, in the monoE reconstruction, which is
reconstructed from the energy of K-edge, it is observed that
the reconstructions with our method visibly reduce artifacts
compared to the other two methods.

Now, we decompose the images into water, Gd and I. Note
that water-like material (such as plastic) will be decomposed
into water, and that I-like material will be decomposed into I
(such as the bone whose main material is Ca). It is observed
that our method suffers fewer artifacts compared to the other
two methods, especially for the material I (second row).

IV. DISCUSSION
We have proposed an improved reconstruction method for
sCT images by combining multi-energy information. Based
on the similarity of the object composition, material-like
pixels are clustered into the same class for fitting. The fitted
images at other energy bins are then filtered (median filtering)
to obtain the final reconstructed image at the current energy
bin, which enables the reconstruction and decomposition
more accurate.

FIGURE 10. Decomposition results of the rabbit injected by Gd. The tubes
in the red rectangle are filled with Gd as reference, with concentration
of 10, 5, 2 and 0 mg/cc from left to right, respectively. The yellow and
green rectangles are organs detected on the rabbit. Globally, our method
reduces some artifacts compared with the other two methods.

The results on both simulation and real data showed that
our method works well not only in terms of reconstruc-
tion quality but also in terms of material decomposition.
To quantitatively validate our method, we utilize materials
with accurate concentrations for simulation. In the simula-
tion, our method operated on the primary results obtained
using FBP. The reconstruction results are not as smooth as
the TV method. This is due to the fact that our method
does not uniformly smooth neighboring pixels. Nevertheless,
the reconstruction results of our method are closer to the
ground-truth because it revises pixel values at each energy
bin through fitting mechanism. This improves reconstruction
and material decomposition on real data that contains more
complex noise and artifacts. That explains why our method
reduces substantially artifacts both in the case of physical
phantom and in the case of rabbit.

We treated water as a constant and subtracted it from
the raw attenuation value. That preserves the linearity when
projecting values from one energy bin into another, but may
affect the quantification of multiple soft tissue materials like
fat and water. Further improvements would be necessary to
be able to describe the features of all the materials.

The performance of our method is affected by the cluster-
ing of pixels during reconstruction. As the linear relationship
of attenuation coefficients at each energy bin exists between
the pixels having similar material composition, correct clas-
sification of pixels is an important element of the proposed
method. For this reason, feature selection for each pixel is an
interesting issue that can be further studied.

The fitting process is another important aspect of the pro-
posed method. Due to the difficulty to model actual noise in
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reconstruction, median filter was adopted to obtain the final
pixel value from all the fitted values corresponding to all
the energy bins. However, other type of filters could also be
envisaged.

We did not compare our method with reconstructions
directly from projections, because of the problems of resource
and computation time. Indeed, for real spectral CT system,
it is not always easy to get and correctly decode raw pro-
jection data. In contrast, for the simulations, we generated
projection data and analyzed it. To reconstruct an image
of size 780∗780, for 3600 projections, the system matrix is
about 10 Gb, which requires large memory and computation
power. In the future, if conditions permit (parsed data from
physical machine, available resources of computation and
memory), it would be very interesting to make comparison
with reconstructions from projection data, such as PRISM.
We expect to further improve our method with respect to
PRISM.

Beam hardeningwas not accounted for in the present study.
It might however be present in large scans, perhaps even with
narrow energy bins. In our future work, we can correct beam
hardening for each energy bins before applying the proposed
reconstruction method. It would also be interesting to assess
the effects of beam hardening correction for different widths
of energy bins.

The proposed reconstruction method could also been seen
as a denoising method like those proposed in [23] and [24],
in the sense that it operates in the spatial image domain. Note
however that the manner in which the denoising involved in
the present study is very different from traditional denoising
methods. This is because spatial images at different energy
bins were not processed independently; instead, intrinsic cor-
relation between them exploited.

V. CONCLUSION
We have proposed a reconstruction method for images in
sCT by exploiting multi-energy information. At each energy
bin, we reconstruct the current image through using the
images from the other energy bins. To achieve this, we first
classify similar pixels using the k-means algorithm. Then,
we make linear fitting between two images corresponding
to two energy bins within each class. These linear fittings
are made two-by-two for all the images corresponding to all
the energy bins, which leads, for a current (original) image
at a given energy bin, to several other (estimated) images
corresponding to the other energy bins. At the end, for each
given pixel, a filtering (median) in the energy direction gener-
ates the final reconstructed image that presents better quality.
The results on both simulated and real data demonstrated
the effectiveness of the proposed method, in terms of both
reconstruction quality and material decomposition.
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